Digraph k-Coloring Games

From Theory to Practice

A. D'Ascenzo ${ }^{1}$, M. D'Emidio ${ }^{1}$, M. Flammini ${ }^{2}$, G. Monaco ${ }^{1}$
${ }^{1}$ University of L'Aquila, Italy
${ }^{2}$ Gran Sasso Science Institute, Italy

SEA 25-27 July 2022
> A directed unweighted graph $G=(V, E),|V|=n,|E|=m$, and a set of $k \geq 2$ colors:
> Vertices represent autonomous agents;
> Arcs represent mutual undirectional conflicts;
> Colors denote agents' available strategies;

* Each agent aims at maximizing her own payoff, defined as the number of outgoing neighbors with a color different from hers.
, Wireless networks: radio stations wish to select the transmission frequency not used by the maximum number of neighboring stations within their range;
> Social networks: members must be split in groups and want to maximize the number of enemies they do not end together with;
> Markets: sellers aim to locate their activities as far as possible from their direct competitors.

Notions of Equilibrium

> A solution to an instance of the digraph k-coloring game corresponds to a state $C=\left(c_{1}, \ldots, c_{n}\right)$, where c_{i} is the color chosen by vertex i;
> A solution is said to be a (pure) Nash Equilibrium (NE) if no agent can improve her payoff by changing strategy (i.e. color);
> Unfortunately, it is known [KPR13 (SAGT)] that the problem of understanding whether digraph \mathbf{k}-coloring games admit a NE is NP-complete, for any $k \geq 2$;
> Carosi et al. [CFM17 (AAMAS)] focused on γ-Nash Equilibrium (γ-NE), which is a state where no agent can strictly improve her payoff by a multiplicative factor of γ by changing color, for some $\gamma \geq 1$, and developed algorithms for this equilibrium notion.

Related Problems

> k-coloring game in undirected graphs always admits a NE, and can be computed in polynomial time if the graph is unweighted $[\mathrm{Ho07}$, KPR13(SAGT)];
> If the graph is weighted, a NE always exists but it is PLS-complete to compute it, also for $k=2$ [SY91(JComput)];
> These results exploit the potential function method:
> digraph k-coloring games do not admit a potential function;
> Related class of problems are graphical games [KLS01(UAI), BFFM11] and hedonic games [AS16(HCSC)].

Algorithms for Digraph k-Coloring Game: AP1

> AP1 is a deterministic, polynomial time algorithm, running in $O\left(\Delta_{o} n m\right)$;
> Given a digraph G and $k \geq 3$, returns a k-coloring such that every vertex with positive degree has payoff at least 1 ;
> Corresponds to a $\Delta_{o}-N E$, since Δ_{0} is the maximum payoff an agent can achieve;
> Iterative algorithm: at each iteration visits the uncolored vertices and detects a cycle or a path;
> It colors the vertices by alternating either three or two colors;

Algorithms for Digraph k-Coloring Game: LLL-SPE

> LLL-SPE is based on the Lovász Local Lemma (LLL);
> A random assignment of k colors has positive probability of returning a constant approximate NE;
, Works for any $k \geq 2$ and any digraph G such that the minimum outgoing degree of any vertex $v \in V(G)$ is $\delta_{o}^{v}=\Omega\left(\log \Delta_{o}+\log \Delta_{i}\right)$;
> Constructive version of LLL runs in polynomial expected running time;
> Starts from a random assignment and iteratively resamples the colors of γ-unhappy vertices and of vertices in their dependency set:
> a γ-unhappy vertex v is an agent that can improve her payoff by a multiplicative factor of γ by changing color;
> a resample operation consists of changing color to the vertices in the dependency set of a γ-unhappy vertex;
> Dependency set of v is made of vertices that whose status is influenced / influences that of v;

Graphical representation of all the types of event that can influence a vertex's behaviour

Experimental Analysis

8 AP1 and LLL-SPE have different nature: the former is a deterministic algorithm with an approximation guarantee dependent on the graph size; the latter is a probabilistic algorithm having a constant approximation guarantee, working on a restricted class of graphs;
\% Up to now, it was not clear which method should be adopted in practice
> Moreover, by a first analysis, both algorithms resulted to produce the same results as a naive random assignment
> We performed an experimental study seeking for the most appropriate algorithm for digraph k-coloring games;
> In order to conduct a complete experimental analysis, we have:
> extended LLL-SPE to LLL-GEN, since LLL-SPE applicability is restricted to a class of graphs which rarely appears in practice;
> considered a naive fully-random algorithm RANDOM that assigns colors to agents uniformly at random;
> casted the well-known best-response dynamics to this class of problems, devising ${ }_{G}$ the BEST-RESP algorithm.

Algorithms for Digraph k-Coloring Game: LLL-GEN and RANDOM

LLL-SPE guarantees' rely on the constraint that $\delta_{o}^{v}=\Omega\left(\log \Delta_{o}+\log \Delta_{i}\right)$, which rarely happens in real world networks;
> Convergence results are not guaranteed on general graphs;
> LLL-GEN is a generalization of LLL-SPE that takes in input also an integer I which specifies a threshold to the number of iterations the algorithm has to run for, and casts the γ approximation value to general graphs;
\geqslant LLL-GEN running time is $O\left(I\left(n+\Delta_{o}+\Delta_{i}+\Delta_{o} \Delta_{i}\right)\right)$;
\& RANDOM is the procedure of uniformly assigning at random a color to each agent in the graph;
$>$ RANDOM running time is $\Theta(n)$.

Algorithms for Digraph k-Coloring Game: BEST-RESP

> BEST-RESP is based on the classical concept of best-response dynamics;
> Starts with a random coloring;
> Selects a 1-unhappy vertex v, if any;
> Assigns the color c_{v} to v that maximizes v 's payoff;
> The process stop when all the vertices are happy, or when a maximum number of iterations $/$ is reached;
> Runs in $O\left(n \Delta_{o} l\right)$.

Experimental Setting

> The analysis has been carried on an ample and heterogeneous set of graph instances;
קarious values of k have been chosen in order to magnify the dependency on k in a reasonable number of tests;
> Considered metrics of interest are (given a coloring C):
> Approximation ratio $\gamma(G, C)$: maximum γ-value over all the agents in the graph;
> Average payoff $\bar{P}(G, C)$: arithmetic mean of the vertices' payoff;
> Fraction of unhappy vertices $U(G, C)$: number of unhappy vertices divided by the order of G;
> Running time $T(G, C)$: running time spent on G to compute the coloring c;
> The algorithms have been implemented in Python 3.8, exploiting NetworKit as graph library.

Graph Dataset

| Dataset | Short | Type | \|V| | \|A| | \bar{d}_{0} | $\overline{\overline{d_{o}}}$ | Δ_{0} | S | LLL | 13 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TwITTER | TWI | DIGITAL SOCIAL | 23370 | 33101 | 1.42 | 0 | 238 | \bigcirc | \bigcirc | |
| FACEBOOK | FAC | DIGITAL SOCIAL | 309717 | 472792 | 1.53 | 0 | 358 | \bigcirc | \bigcirc | |
| AMAZON | AMA | RATINGS | 80679 | 135336 | 1.68 | 2 | 9 | \bigcirc | \bigcirc | |
| Flight | FLT | INFRASTRUCTURE | 1226 | 2613 | 2.13 | 1 | 24 | \bigcirc | \bigcirc | |
| Peer2Peer | P2P | INTERNET | 62586 | 147892 | 2.36 | 0 | 78 | \bigcirc | \bigcirc | |
| Luxembourg | LUX | ROAD | 30647 | 75546 | 2.47 | 3 | 9 | \bigcirc | \bigcirc | |
| Rand3 | RR3 | RANDOM | 10000 | 30000 | 3 | 3 | 3 | - | - | |
| Rand4 | RR4 | RANDOM | 10000 | 40000 | 4 | 4 | 4 | - | - | |
| Oregon-AS | ORE | AUTONOMOUS SYSTEM | 10670 | 44004 | 4.12 | 2 | 2312 | \bigcirc | \bigcirc | |
| Rand5 | RR5 | RANDOM | 10000 | 50000 | 5 | 5 | 5 | - | - | |
| Health | HEA | HUMAN SOCIAL | 2539 | 12969 | 5.11 | 5 | 10 | \bigcirc | \bigcirc | |
| RELATIVITY | REL | COLLABORATION | 5242 | 28968 | 5.53 | 3 | 81 | \bigcirc | \bigcirc | |
| Linux | LIN | COMMUNITY | 30834 | 213424 | 6.92 | 5 | 243 | \bigcirc | \bigcirc | |
| Peer2PeerSm | SPP | INTERNET | 10876 | 79988 | 7.35 | 5 | 103 | \bigcirc | \bigcirc | |
| Google | GOO | HYPERLINKS (LOCAL) | 15763 | 170335 | 10.81 | 8 | 852 | \bigcirc | \bigcirc | |
| Erdős-RÉnyi A | ERA | RANDOM | 1000 | 12460 | 12.46 | 12 | 27 | - | \bigcirc | |
| Blog | BLG | INTERACTION | 1224 | 19022 | 15.54 | 7 | 256 | \bigcirc | \bigcirc | |
| Erdős-RÉnyi B | ERB | RANDOM | 1000 | 24943 | 24.94 | 25 | 45 | - | - | |
| WIki-Vote | WVT | VOTING | 7115 | 201524 | 28.32 | 4 | 1065 | \bigcirc | \bigcirc | |
| Email | EMA | Interaction | 1005 | 32128 | 31.97 | 21 | 345 | \bigcirc | \bigcirc | |
| Erdős-RÉnyi C | ERC | RANDOM | 1000 | 49924 | 49.92 | 50 | 74 | - | - | |
| Erdớs-RÉnyi D | ERD | RANDOM | 1000 | 100025 | 100.03 | 100 | 134 | - | - | |
| Erdős-RÉnyi E | ERE | RANDOM | 1000 | 199443 | 199.44 | 199 | 238 | - | - | |
| PALEY601 | PL1 | RANDOM | 601 | 180300 | 300 | 300 | 300 | | - | |
| PALEY1181 | PL2 | RANDOM | 1181 | 696790 | 590 | 590 | 590 | - | - | |

Overview of used input digraphs. The first three columns contain dataset name, acronym, and type; the 4th and 5th columns show number of vertices and arcs of the digraph; the 6th, 7 th and 8 th columns report average, median and maximum outgoing degree. Finally, the 9 th column highlights whether the graph is synthetic or real-world $(-=$ true, $O=$ false $)$, while the last column specifies whether the LLL holds in the graph $(\Theta=$ true, $\mathrm{O}=$ false $)$. Inputs are sorted by $\overline{d_{0}}$.

Summary Results

metric	algorithm	best	2nd	3rd	worst	total
$\gamma(G, c)$	RND	4 (2.3 \%)	33 (18.9 \%)	81 (46.3 \%)	57 (32.5\%)	175 (100 \%)
	AP1	1 (0.6 \%)	69 (39.4\%)	51 (29.1 \%)	54 (30.9\%)	175 (100\%)
	LLG	$7(4.0$ \%)	62 (35.4 \%)	43 (24.6 \%)	63 (36.0 \%)	175 (100\%)
	BR	163 (93.1 \%)	11 (6.3 \%)	0 (0.0 \%)	1 (0.6 \%)	175 (100\%)
$U(G, c)$	RND	1 (0.6 \%)	42 (24.0 \%)	106 (60.6 \%)	26 (14.8 \%)	175 (100\%)
	AP1	0 (0.0 \%)	13 (7.4\%)	13 (7.4\%)	149 (85.1 \%)	175 (100\%)
	LLG	$6(3.4$ \%	114 (65.1\%)	55 (31.5\%)	0 (0.0 \%)	175 (100\%)
	BR	168 (96.0 \%)	6 (3.4 \%)	1 (0.6 \%)	0 (0.0 \%)	175 (100\%)
$\bar{P}(G, c)$	RND	5 (2.9 \%)	56 (32.0 \%)	96 (54.9 \%)	18 (10.2 \%)	175 (100\%)
	AP1	0 (0.0 \%)	$7(4.0$ \%)	13 (7.4\%)	155 (88.6 \%)	175 (100\%)
	LLG	7 7 4.0 \%	106 (60.6 \%)	60 (34.3 \%)	$2(1.1 \%)$	175 (100\%)
	BR	163 (93.2 \%)	6 (3.4 \%)	6 (3.4 \%)	0 (0.0 \%)	175 (100\%)
$T(\mathrm{G}, \mathrm{c})$	RND	173 (98.9 \%)	2 (1.1 \%)	0 (0.0 \%)	0 (0.0 \%)	175 (100\%)
	AP1	$2(1.1$ \% $)$	152 (86.9 \%)	14 (8.0 \%)	$7(4.0 \%)$	175 (100\%)
	LLG	0 (0.0 \%)	20 (11.4 \%)	101 (57.7 \%)	54 (30.9\%)	175 (100\%)
	BR	0 (0.0 \%)	1 (0.6 \%)	60 (34.3 \%)	114 (65.1\%)	175 (100\%)

Aggregate statistics for all tested algorithms with respect to the four metrics, for all combinations of inputs and values of k.
\geqslant Data highlights that BR is the best performing one, globally, and that it has been able find G pure NE in almost all instances!

Results for $k=3$

Figure: Performance of algorithms RND, LLG, AP1 and BR, resp., in graphs TWI (top) and HEAs (bottom), with $k=3$.

Results for $k=3$ (cont'd)

Figure: Performance of algorithms RND, LLG, AP1 and BR, resp., in graphs ERD (top) and PLd s (bottom), with $k=3$.

Results for $k>3$

Figure: Performance of algorithms RND, LLG, AP1 and BR, resp., in graphs TWI (top) anderd s (bottom), with increasing values of k.
> Our analysis provides empirical evidence of the following facts:
> AP1 and LLL-GEN performs badly in practice;
> best response dynamics outperforms algorithms with guarantees, providing pure NE in almost all tested graph instances;
> Motivates research efforts towards proving the existence of NE in specific graph classes;
> Even when a pure NE is not reached, γ values result to be close to $\mathbf{1}$, suggesting that algorithms with better theoretical guarantees may be devised.

Thanks for you attention!

Any question?

KPR13 J. Kun, B. Powers, and L. Reyzin. Anti-coordination games and stable graph colorings, SAGT13
CFM17 R. Carosi, M. Flammini, and G. Monaco. Computing approximate pure nash equilibria in digraph k-coloring games,AAMAS17
Ho07 Martin Hoefer. Cost sharing and clustering under distributed competition. PhD thesis, University of Konstanz, 2007;
SY91 A. A. Schäffer and M. Yannakakis. Simple local search problems that are hard to solve. SIAM J. Comput., 20(1):56-87, 1991

KLS01 M. J. Kearns, M. L. Littman, and S. P. Singh. Graphical models for game theory, UAI01 BFFM11 V. Bilò, A. Fanelli, M. Flammini, and L. Moscardelli. Graphical congestion games. Algorithmica, 61(2):274-297, 2011
AS16 H. Aziz and R. Savani. Hedonic games. Handbook of Computational Social Choice, pages 356-376, 2016

