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Static and Temporal Graphs

Modern networks are highly dynamic:

Social networks: friendships are added/removed, individuals leave,
new ones enter

Transportation networks: transportation units change with time
their position in the network

Physical systems: e.g. systems of interacting particles

The common characteristic in all these applications:

the graph topology is subject to discrete changes over time

⇒ the notion of vertex adjacency must be appropriately re-defined
(by introducing the time dimension in the graph definition)

Various graph concepts (e.g. reachability, connectivity):

crucially depend on the exact temporal ordering of the edges

Paul Spirakis (Liverpool) Temporal Graphs: Algorithms & Complexity and a call for experimentsHeidelberg , July 25 2022 2 / 49



Temporal graphs (formally)

Definition (Temporal Graph)

A temporal graph is a pair (G,λ) where:

G = (V,E) is an underlying (di)graph and

λ : E → 2N is a discrete time-labeling function.

If t ∈ λ(e) then edge e is available at time t
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Temporal graphs (formally)

Definition (Temporal Graph)

A temporal graph is a pair (G,λ) where:

G = (V,E) is an underlying (di)graph and

λ : E → 2N is a discrete time-labeling function.

Alternatively, we can view it as a sequence of static graphs, the snapshots:
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Temporal graphs (formally)

Definition (Temporal Graph)

A temporal graph is a pair (G,λ) where:

G = (V,E) is an underlying (di)graph and

λ : E → 2N is a discrete time-labeling function.

Usually the input is a graph G with given labels {λ(e) : e ∈ E}
Other models have been studied as well, e.g. various randomized
models for temporal graphs:

every edge of G gets ρ random labels in each period α of time
[Akrida, Gasieniec, Mertzios, Spirakis, J. Par. Distr. Comp., 2016]
every edge appears according to a probability distribution
[Akrida, Mertzios, Nikoletseas, Raptopoulos, Spirakis, Zamaraev,
J. Computer and System Sciences, 2020]
random (temporal) edge permutation in an Erdös-Renyi random graph
[Casteigts, Raskin, Renken, Zamaraev, FOCS, 2021]
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Overview

Temporal graphs

Temporal parameters and temporal paths: a warm-up

Temporal vertex cover

Temporal transitive orientations

Stochastic temporal graphs
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Temporal paths

The conceptual shift from static to temporal graphs significantly impacts:

the definition of basic graph parameters

the type of tasks to be computed

Graph properties can be classified as:

a-temporal, i.e. satisfied at every instance

connectivity at every point in time

temporal, i.e. satisfied over time

communication routes over time
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Temporal paths

The most natural known temporal notion in temporal graphs:

Definition (Temporal path; Time-respecting path; Journey)

Let (G,λ) be a temporal graph and P = (e1, e2, . . . , ek) be a walk in G.
A temporal path is a sequence ((e1, `1), (e2, `2), . . . , (ek, `k)), where:

`1 < `2 < . . . < `k
and `i ∈ λ(ei), 1 ≤ i ≤ k.
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Motivation due to causality in information dissemination:

information “flows” along edges whose labels respect time ordering

⇒ strictly increasing labels along the path

a “static path” given “in pieces”
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Temporal paths

The most natural known temporal notion in temporal graphs:

Definition (Temporal path; Time-respecting path; Journey)

Let (G,λ) be a temporal graph and P = (e1, e2, . . . , ek) be a walk in G.
A temporal path is a sequence ((e1, `1), (e2, `2), . . . , (ek, `k)), where:

`1 < `2 < . . . < `k
and `i ∈ λ(ei), 1 ≤ i ≤ k.

A temporal path can also be considered to be non-strict if we demand
that:

`1 ≤ `2 ≤ . . . ≤ `k
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Metrics to optimize

Question: What is the temporal analogue of an s-t shortest path?

Answer: Not uniquely defined!

topologically shortest path: smallest number of edges

fastest path: smallest duration

foremost path: smallest arrival time

Example:

s t

a b

c

d e8

97

2 8

shortest: s-c-t (two edges)

fastest: s-d-e-t (no intermediate waiting)

foremost: s-b-c-t (arriving at time 6)

3, 6

2, 51, 4
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foremost path: smallest arrival time

Example:

s t

a b

c

d e8

97

2 8

shortest: s-c-t (two edges)

fastest: s-d-e-t (no intermediate waiting)

1, 4

3, 6

2, 5

foremost: s-a-b-t (arriving at time 6)
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Overview

Temporal graphs

Temporal paths: a warm-up

Temporal vertex cover

Temporal transitive orientations

Stochastic temporal graphs
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Basic definitions I

To specify a temporal graph class, we can:

either restrict the underlying graph G,

or restrict the labeling λ : E → 2N (or both)

Definition (Temporal Graph Classes)

For a class X of static graphs we say that a temporal graph (G,λ) is

X temporal, if G ∈ X ;

always X temporal, if Gi ∈ X for every i ∈ [T ] = {1, 2, . . . , T}.

Definition (Temporal Vertex Subset)

A pair (u, t) ∈ V × [T ] is called the appearance of vertex u at time t.
A temporal vertex subset of (G,λ) is a set S ⊆ V × [T ] of vertex
appearances in (G,λ).
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Basic definitions II

Definition (Edge is Temporally Covered)

A vertex appearance (w, t) temporally covers an edge e if:

(i) w covers e, i.e. w ∈ e, and

(ii) t ∈ λ(e), i.e. the edge e is active during the time slot t.

Example:

c

u v w

G1

c

u v w

G2

c

u v w

G3

c

u v w

G4

c

u v w

G5

c

u v w

G6

c

u v w

G7

c

u v w

G8

– (c, 3) temporally covers edge cv, but

– (c, 3) temporally covers neither cu, nor cw.

[Akrida, Mertzios, Spirakis, Zamaraev, J. Comp. & System Sciences, 2020]
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Basic definitions: Temporal Vertex Cover

Definition (Temporal Vertex Cover)

A temporal vertex cover of (G,λ) is a temporal vertex subset S of (G,λ)
such that every edge e ∈ E(G) is temporally covered by at least one
vertex appearance in S.

[Akrida, Mertzios, Spirakis, Zamaraev, J. Comp. & System Sciences, 2020]

Example
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– {(c, 2), (c, 3), (c, 8)} is a Temporal Vertex Cover
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Definition (Temporal Vertex Cover)

A temporal vertex cover of (G,λ) is a temporal vertex subset S of (G,λ)
such that every edge e ∈ E(G) is temporally covered by at least one
vertex appearance in S.

Example
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4

c

u v w

5

c

u v w

6

c

u v w

7

c

u v w

8

– {(c, 2), (c, 3), (c, 8)} is a Temporal Vertex Cover

– {(c, 5)} is a minimum Temporal Vertex Cover
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Basic definitions: Temporal Vertex Cover

Definition (Temporal Vertex Cover)

A temporal vertex cover of (G,λ) is a temporal vertex subset S of (G,λ)
such that every edge e ∈ E(G) is temporally covered by at least one
vertex appearance in S.

Example
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u v w
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u v w

3

c

u v w

4

c

u v w

5

c

u v w

6

c

u v w

7

c

u v w

8

Temporal Vertex Cover (TVC)

Input: A temporal graph (G,λ).
Output: A temporal vertex cover S of (G,λ) with the minimum |S|.
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Basic definitions: Sliding Window Temporal Vertex Cover

Definition (Time Windows)

1 For every time slot t ∈ [1, T −∆ + 1]:
the time window Wt = [t, t+ ∆− 1] is the sequence of the
∆ consecutive time slots t, t+ 1, . . . , t+ ∆− 1.

2 E[Wt] =
⋃

i∈Wt
Ei is the union of all edges appearing at least once in

the time window Wt.

3 S[Wt] = {(w, t) ∈ S : t ∈Wt} is the restriction of the temporal
vertex subset S to the window Wt.
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Basic definitions: Sliding Window Temporal Vertex Cover

Definition (Sliding ∆-Window Temporal Vertex Cover)

A sliding ∆-window temporal vertex cover of (G,λ) is a temporal vertex
subset S of (G,λ) such that:

for every time window Wt and for every edge e ∈ E[Wt],

e is temporally covered by at least one vertex appearance
(w, t) ∈ S[Wt].
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Basic definitions: Sliding Window Temporal Vertex Cover

Example (∆ = 4)

c

u v w
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u v w
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c

u v w

3

c

u v w

4

c

u v w

5

c

u v w

6

c

u v w

7

c

u v w

8

– {(c, 2), (c, 3), (c, 6), (c, 8)} is not a sliding ∆-window temporal vertex cover,
as edges cv, cw ∈ E[W4] are not temporally covered in window W4.
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6
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7
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u v w

8

– {(c, 1), (c, 5)} is a sliding ∆-window temporal vertex cover.
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Basic definitions: Sliding Window Temporal Vertex Cover

Sliding Window Temporal Vertex Cover (SW-TVC)

Input: A temporal graph (G,λ) with lifetime T , and an integer ∆ ≤ T .
Output: A sliding ∆-window temporal vertex cover S of (G,λ) with the
minimum |S|.

Motivation:

(static) Vertex Cover:
network surveillance (e.g. CCTV cameras etc.)

Temporal Vertex Cover:
network surveillance in a dynamic network

Sliding Window Temporal Vertex Cover:
dynamic surveillance in every possible ∆-time window
(e.g. for crimes that need time ∆ to be performed)
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Temporal Vertex Cover: the star temporal case

Lemma (Akrida et al., J. Comp. & System Sciences, 2020)

TVC on star temporal graphs is equivalent to Set Cover.

leafs of the underlying star ↔ ground set of the Set Cover instance

each snapshot graph ↔ a set in the Set Cover instance

Goal: Choose sets (snapshots) to cover all elements (leafs’ edges)

Example:

c

u v w

1

c

u v w

2

c

u v w

3

c

u v w

4

c

u v w

5

c

u v w

6

c

u v w

7

c

u v w

8

1 Universe: {u, v, w}
2 Sets: S1 = {u, v, w}, S2 = {u}, S3 = {v}, S4 = {w}, . . .
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SW-TVC: always star temporal graphs

1 2 3 4 5 6 7 8

On always star temporal graphs, a minimum size SW-TVC contains at
most one vertex (the star center) in each snapshot

⇒ we assign a Boolean variable xi ∈ {0, 1} for the snapshot at time i

For variables x1, x2, . . . , x∆ we define f(t;x1, x2, . . . , x∆) to be the
smallest cardinality of a sliding ∆-window temporal vertex cover S
of (G,λ)|[1,t+∆−1], such that the solution in the time window
Wt = {t, . . . , t+ ∆− 1} is given by the variables x1, x2, . . . , x∆.

Lemma (dynamic programming)

f(t;x1, x2, . . . , x∆) = x∆ + min
y∈{0,1}

{f(t− 1; y, x1, x2, . . . , x∆−1)}
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SW-TVC: always star temporal graphs

1 2 3 4 5 6 7 8

f(6; 1, 0, 1)
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SW-TVC

Theorem (always star temporal graphs)

SW-TVC on always star temporal graphs can be solved in
O(T∆(n+m) · 2∆) time.
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SW-TVC

Theorem (always star temporal graphs)

SW-TVC on always star temporal graphs can be solved in
O(T∆(n+m) · 2∆) time.

Theorem (the general case)

SW-TVC on general temporal graphs can be solved in
O(T∆(n+m) · 2n(∆+1)) time.

Main idea:

for each of the ∆ snapshots in the (currently) last ∆-window, we
enumerate all 2n vertex subsets,

instead of just enumerating over the truth values of ∆ Boolean
variables (“always star” case)
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Theorem (always star temporal graphs)

SW-TVC on always star temporal graphs can be solved in
O(T∆(n+m) · 2∆) time.

Theorem (the general case)

SW-TVC on general temporal graphs can be solved in
O(T∆(n+m) · 2n(∆+1)) time.

We can prove:

Corollary

Our O(T∆(n+m) · 2n(∆+1))-time algorithm is asymptotically almost
optimal (assuming ETH).
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∆-TVC

If the parameter ∆ (the size of a sliding window) is fixed, we refer to
SW-TVC as ∆-TVC (i.e. ∆ is a part of the problem name).

Observation

(∆ + 1)-TVC is at least as hard as ∆-TVC.

t = 1 t = 2 t = ∆

t = ∆ + 1

t = ∆ + 2

G1 G2
. . . G∆ ∅ G∆+1 . . . ∅G2∆

t = 2∆ + 1

t = 2∆ + 2

. . . . . . . . .

t = T + b T
∆
c

. . .
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2-TVC for max deg ≤ 3

Let X be the class of graphs whose connected components are induced
subgraphs of graph Ψ, with maximum degree 3:

Ψ

Clearly, Vertex Cover is linearly solvable on graphs from X .

Theorem (Akrida et al., J. Comp. & System Sciences, 2020)

There is no PTAS for 2-TVC on always X temporal graphs.

What is the complexity for (always) maximum degree 2 ?
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2-TVC for max deg ≤ 2

Our results when the underlying graph is a path or a cycle:

linear-time algorithm for TVC (no sliding windows)

2-TVC is NP-hard

PTAS for ∆-TVC, for any ∆ ≥ 2

[Hamm, Klobas, Mertzios, Spirakis, AAAI, 2022]
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2-TVC for max deg ≤ 2

Greedy linear-time algorithm for TVC on paths:

visit the vertices from left to right

for every i = 1, 2, . . . , n− 1 do
if ei and ei+1 appear* at the same time t (for some t) then

add (vi+1, t) to C (where ei ∩ ci+1 = {vi+1})
i = i+ 2

else
Add to C an arbitrary (vi, t) or (vi+1, t), where t ∈ λ(ei).
i = i+ 1

return C.

* Denote by ei = vivi+1, for every i = 1, 2, . . . , n− 1.
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2-TVC is NP-hard on temporal paths

Reduction from planar monotone rectilinear 3SAT.

φ =(x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x4 ∨ x5)∧
(x2 ∨ x3 ∨ x5) ∧ (x1 ∨ x2 ∨ x5)

x1 x2 x3 x4 x5

(x2 ∨ x3 ∨ x4)

(x1 ∨ x2 ∨ x4)

(x1 ∨ x4 ∨ x5)

(x2 ∨ x3 ∨ x5)

(x1 ∨ x2 ∨ x5)
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2-TVC is NP-hard on temporal paths

High-level construction:

x1 x2 x3 x4 x5

(x2 ∨ x3 ∨ x4)

(x1 ∨ x2 ∨ x4)

(x1 ∨ x4 ∨ x5)

(x2 ∨ x3 ∨ x5)

(x1 ∨ x2 ∨ x5)

x3 x3x2 x2x1x1 x1 x2 x2 x5 x5 x5x4 x4 x4

Paul Spirakis (Liverpool) Temporal Graphs: Algorithms & Complexity and a call for experimentsHeidelberg , July 25 2022 21 / 49



PTAS for ∆-TVC on temporal paths

Reduction to this problem:

Geometric hitting set

Input: A pair R = (P,D) (range space), where P is a set of points
in R2 and D is a set of regions covering all points of P .
Output: A smallest subset of points S ⊆ P , such that every region in D
contains at least one point of S.

PTAS for r-admissible set regions:

– boundaries of s1, s2 ∈ D intersect at most r times

– s1 \ s2 and s2 \ s1 are connected regions

Theorem (Mustafa and Ray, Discrete and Computat. Geometry, 2010)

For every ε > 0, there is an (1 + ε)-approximation algorithm for
Geometric hitting set that runs in O(|D||P |O(ε−2)) time.
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SW-TVC: approximation algorithms II

Single-edge temporal graph: exact algorithm

1 2 3 4 5 6 7 8
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SW-TVC: approximation algorithms II

Single-edge temporal graph: exact algorithm
1 In the first window Wt = [1,∆]: cover the edge at the

latest time slot it appears
(to “cover” as many other windows as possible)

2 Remove all windows that are now covered
3 Repeat

greedy algorithm

linear time
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SW-TVC: approximation algorithms II

Always degree at most d temp. graphs: d-approx. algorithm

Main idea:

solve independently each single-edge subgraph of G

take the union of the solutions

Lemma (Akrida et al., J. Comp. & System Sciences, 2020)

There is a O (mT )-time d-approximation algorithm for SW-TVC on
always degree at most d temporal graphs.

Can we do better?
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SW-TVC: approximation algorithms II

Always degree at most d temp. graphs:
(d− 1)-approx. algorithm

Main idea:

instead of single edges, solve first SW-TVC independently every
possible P3 in (G, λ)

take the union of the solutions

Lemma (Hamm, Klobas, Mertzios, Spirakis, AAAI, 2022)

There is a O (m2T 2)-time (d− 1)-approximation algorithm for
SW-TVC on always degree at most d temporal graphs.

We suspect an approximation ratio c · d . . .
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Overview

Temporal graphs

Temporal paths: a warm-up

Temporal vertex cover

Temporal transitive orientations

Stochastic temporal graphs
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Temporal transitive orientation
Motivation: Rumor Spreading

A

→

B

→

C

Scenario: C hears a rumor from B, asks for the source A, then (later)
confirms with A whether the rumor is true.
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Temporal Transitivity

u w

v

t1 t2

t3

Temporal Transitivity

If (uv, t1) and (vw, t2) are temporal edges with t1 ≤ t2,

then (uw, t3) is a
temporal edge with t2 ≤ t3.

Exchanging ≤ by < yields four variants:
Temporal ({<,≤}, {<,≤})-Transitivity

first “<” is called “strict”; second “<” is called “strong”

[Mertzios, Molter, Renken, Spirakis, Zschoche, MFCS, 2021]
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Static Transitivity

Definition

A graph is transitively orientable if its edges can be oriented such that, if
uv and vw are oriented edges, then uw exists in the graph and is an
oriented edge.

u w

v

Forbidden induced subgraph

Transitively orientable graphs can be recognized in polynomial time
[see.g. Golumbic ’80].
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Recognizing Temporal Transitivity I

We assume for simplicity exactly one temporal label per edge

Temporal (≤,≤)-Transitivity

If (uv, t1) and (vw, t2) with t1 ≤ t2, then (uw, t3) with t2 ≤ t3.

u w

v

t3

t2t1

t1 = t2 = t3 t1 < t2 = t3 t1 = t2 < t3 t1 < t2 < t3

non-cyclic wu = wv
vw =⇒ uw
vu =⇒ wu

vw =⇒ uw
vu =⇒ wu
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Recognizing Temporal Transitivity II

u w

v

t3

t2t1
u w

v

t1 t2

t1 = t2 = t3 t1 < t2 = t3 t1 ≤ t2 < t3 t1 = t2 t1 < t2

(≤,≤) non-cyclic wu = wv
vw =⇒ uw
vu =⇒ wu

uv = wv uv =⇒ wv

(≤, <) ⊥ wu ∧ wv vw =⇒ uw
vu =⇒ wu

uv = wv uv =⇒ wv

(<,≤) > non-cyclic
vw =⇒ uw
vu =⇒ wu

> uv =⇒ wv

(<,<) > wu ∧ wv vw =⇒ uw
vu =⇒ wu

> uv =⇒ wv
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Our Results

Recognizing Temporal Transitivity

Recognizing of Non-Strict Temporal (≤,≤)-Transitivity in poly-time.

Recognizing Strict Temporal (<,≤)-Transitivity is NP-hard.

Remaining (“strong”) variants can be recognized in polynomial time.

Temporal Transitivity Completion
(given a partially oriented graph, add ≤ k edges, and one label per edge)

All four variants are NP-hard.

Poly-time if input graph is fully oriented.

FPT wrt. number of unoriented edges in input graph.

Recognizing Multilayer Transitivity
(permanent orientation of edges in a temporal graph)

NP-hard.

[Mertzios, Molter, Renken, Spirakis, Zschoche, MFCS, 2021]
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Poly-time Algorithm for Temporal (≤,≤)-Transitivity I

Important concept: Forcing:
u w

v

1 1

Main idea: Create a mixed Boolean formula φ3NAE ∧ φ2SAT from:

u w

v

t3
t2t1

u w

v

t1 t2

t1 = t2 = t3 t1 < t2 = t3 t1 ≤ t2 < t3 t1 = t2 t1 < t2

non-cyclic wu = wv
vw =⇒ uw
vu =⇒ wu

uv = wv uv =⇒ wv

Similar algorithm with solving 2SAT:

1 Set a variable, apply all “static forcings”: if no contradiction, keep it.
2 Iteratively set truth values and replace φ3NAE-clauses with
φ2SAT-clauses.
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Poly-time Algorithm for Temporal (≤,≤)-Transitivity II

Some key insights:

Lemma

If orienting an edge forces orienting an edge in a “synchronous triangle”, it
also forces orienting a different edge in the same synchronous triangle.

a

b

u w

v

t

ttt′

Lemma

Transforming NAE-clauses into 2SAT-clauses creates no “new implication
chains”.
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NP-hardness of (Strict) Temporal (<,≤)-Transitivity

Reduction from 3SAT. Clause gadget:

2

3 3

3

2 1

2

3

Observation

Not all three thick edges can be oriented inwards, two inwards and one
outwards possible.
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Overview

Temporal graphs

Temporal parameters and temporal paths: a warm-up

Temporal vertex cover

Temporal transitive orientations

Stochastic temporal graphs
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Stochastic Temporal Graphs

Levels of knowledge about the network evolution:

whole temporal graph given in advance

adversary who reveals it snapshot-by-snapshot at every time step

intermediate knowledge setting, captured by stochastic temporal
graphs, where the network evolution is given by a probability
distribution that governs the appearance of each edge over time

“Memory effect”: appearance probability of a particular edge at a given
time step t depends on the appearance (or absence) of the same edge at
the previous k ≥ 1 time steps

faulty network communication

[Akrida, Mertzios, Nikoletseas, Raptopoulos, Spirakis, Zamaraev,
J. Computer and System Sciences, 2020]

Paul Spirakis (Liverpool) Temporal Graphs: Algorithms & Complexity and a call for experimentsHeidelberg , July 25 2022 43 / 49



Stochastic Temporal Graphs

Levels of knowledge about the network evolution:

whole temporal graph given in advance

adversary who reveals it snapshot-by-snapshot at every time step

intermediate knowledge setting, captured by stochastic temporal
graphs, where the network evolution is given by a probability
distribution that governs the appearance of each edge over time

“Memory effect”: appearance probability of a particular edge at a given
time step t depends on the appearance (or absence) of the same edge at
the previous k ≥ 1 time steps

faulty network communication

[Akrida, Mertzios, Nikoletseas, Raptopoulos, Spirakis, Zamaraev,
J. Computer and System Sciences, 2020]

Paul Spirakis (Liverpool) Temporal Graphs: Algorithms & Complexity and a call for experimentsHeidelberg , July 25 2022 43 / 49



Stochastic Temporal Graphs

Memoryless case, G(0):
∀e ∈ E, ∀t ∈ N, e appears in Gt with probability pe.
The numbers {pe : e ∈ E} are given parameters of the model.
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Stochastic Temporal Graphs

Memoryless case, G(0):
∀e ∈ E, ∀t ∈ N, e appears in Gt with probability pe.
The numbers {pe : e ∈ E} are given parameters of the model.

Memory-1, G(1):
Initial snapshot G0 ⊆ G.

∀e ∈ E, ∀t ∈ N:

if e was absent in Gt−1, e appears in Gt with probability pe and is absent
with probability 1− pe
if e appeared in Gt−1, e appears in Gt with probability 1− qe and is absent
with probability qe

Me =

 0 1
0 1− pe pe
1 qe 1− qe

 , where 0 ≤ pe, qe ≤ 1.
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The numbers {pe : e ∈ E} are given parameters of the model.

Memory-1, G(1):
Initial snapshot G0 ⊆ G.

∀e ∈ E, ∀t ∈ N:

if e was absent in Gt−1, e appears in Gt with probability pe and is absent
with probability 1− pe
if e appeared in Gt−1, e appears in Gt with probability 1− qe and is absent
with probability qe

Me =

 0 1
0 1− pe pe
1 qe 1− qe

 , where 0 ≤ pe, qe ≤ 1.

If pe = p and qe = q, ∀e, we have exactly the edge-Markovian evolving graph model
introduced by Clementi et al. (SIAM Journal on Discrete Mathematics ’10).
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Stochastic Temporal Graphs

Memoryless case, G(0):
∀e ∈ E, ∀t ∈ N, e appears in Gt with probability pe.
The numbers {pe : e ∈ E} are given parameters of the model.

Memory-k, G(k):
Initial sequence of k snapshots G−k+1, . . . , G−1, G0 ⊆ G.

∀e ∈ E, ∀t ∈ N:

e appears with probability pe(H
(k)
e ) that depends only on the history H

(k)
e

of its appearance in the last k snapshots.

at every time step t, this history is a k-bit binary vector, where a 0-entry
(resp. 1-entry) on the i-th position denotes absence (resp. appearance) of e
in Et−k+i−1, for i = 1, . . . , k
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∀e ∈ E, ∀t ∈ N, e appears in Gt with probability pe.
The numbers {pe : e ∈ E} are given parameters of the model.

Memory-k, G(k):
Initial sequence of k snapshots G−k+1, . . . , G−1, G0 ⊆ G.

∀e ∈ E, ∀t ∈ N:

e appears with probability pe(H
(k)
e ) that depends only on the history H

(k)
e

of its appearance in the last k snapshots.

at every time step t, this history is a k-bit binary vector, where a 0-entry
(resp. 1-entry) on the i-th position denotes absence (resp. appearance) of e
in Et−k+i−1, for i = 1, . . . , k

For every k ≥ 1, the memory-(k−1) model is a special case of the memory-k
model.
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The problems

Unbounded number of messages:
“Flooding” the network with
information

s y

Limited number of messages:
transferring a package with a
tangible good

s y
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The problems

Minimum Arrival:

Given a stochastic temporal graph
on an underlying graph G = (V,E)
and two distinct vertices s, y ∈ V ,
compute the expected arrival time
of a foremost s-y journey,
E[X(s, y)].

Limited number of messages:
transferring a package with a
tangible good

s y
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The problems

Minimum Arrival:

Given a stochastic temporal graph
on an underlying graph G = (V,E)
and two distinct vertices s, y ∈ V ,
compute the expected arrival time
of a foremost s-y journey,
E[X(s, y)].

Best Policy:

Every day t Alice “wakes up” in the
morning located at vertex st and looks
at which edges are available in today’s
snapshot; by only knowing her current
position, the history of the last k
snapshots, and the probabilistic rules of
edge appearance, Alice needs to decide
whether:

to stay at the vertex st she
currently is, or

to use an edge of Gt to move to a
neighbouring vertex.

Paul Spirakis (Liverpool) Temporal Graphs: Algorithms & Complexity and a call for experimentsHeidelberg , July 25 2022 45 / 49



The problems

Minimum Arrival:

Given a stochastic temporal graph
on an underlying graph G = (V,E)
and two distinct vertices s, y ∈ V ,
compute the expected arrival time
of a foremost s-y journey,
E[X(s, y)].

Best Policy:

Given a stochastic temporal graph on
an underlying graph G = (V,E) and
two distinct vertices s, y ∈ V ,
compute the expected arrival time
of a best policy s-y journey,
E[Y (s, y)].
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The problems

Minimum Arrival:

Arrival time of the foremost
journey from s to y will be
equal to the first day after
day 1 on which some edge
incident to y appears.

Time needed for that follows
geometric distribution, with
success probability

1−
(
1− n−0.9

)n−2
=

1− o(1).

So, solution is:
E[X(s, y)] = 2 + o(1).

s

v1

v2

v3

v4

...

vn−2

y

1

1

n−0.9

n−0.9

Best Policy:

Any best policy for Alice
will cross an edge
incident to s on day 1
and then wait until the
“next” edge in the path,
incident to y, appears.

Time needed for that to
happen is n0.9.

So, solution is:
E[Y (s, y)] = 1 + n0.9.
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Our results

Minimum Arrival:

#P-hard (even for the memoryless case)

Approximation Scheme for memory-0 on series-parallel graphs

Fully Polynomial Randomized Approximation Scheme (FPRAS) for
memory-k, k ≥ 0

Best Policy:

#P-hard for memory-k, k ≥ 3

Formulation as MDP, leading to exact doubly-exponential-time
algorithm

Polynomial-time dynamic programming algorithm for the memoryless
case

Studied before; different approaches; polynomial-time solutions
e.g. Ogier and Rutenburg, Infocom ’92 & Basu et al., arXiv
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Research Directions

Parameterized versions of the problems (with the appropriate
parameters)

Approximation algorithms

Special temporal graph classes

e.g. the class of temporally orientable temporal graphs...?

Distinction for path problems: strict vs. non-strict

the same distinction also on derived notions, e.g. temporal transitivity

Other meaningful temporal graph problems

lifting “algorithmic graph theory” to the temporal case

Need for experimental algorithms

Experimental Algorithms are needed especially for the provably hard
problems here
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Thank you for your attention!
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