Tobias Achterberg
26 July 2022

Combinatorial Algorithms
GUROBI Used Inside a MIP Solver

OPTIMIZATION

GUROBI
Linear and Mixed Integer Programming

* Alinear program (LP) is defined as

min c’x
st. Ax < b
X e R"

« A mixed integer program (MIP) is defined as

T

min ¢ x
st. Ax < b
X e R"
xj € Z foralljel

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 2

ATM provisioning
Compilers
Defense
Electrical power
Energy

Finance

Food service

Logistics/supply chain
Medical

Mining National research labs
Online dating

Portfolio management
Railways

Recycling

GUROBI

Applications of Mixed Integer Programming
Accounting Forestry Revenue management
Advertising Gas distribution Semiconductor
Agriculture Government Shipping
- L Social networking
Airlines Internet applications

Sports betting

Sports scheduling
Statistics

Steel Manufacturing
Telecommunications
Transportation
Utilities

Workforce scheduling

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 3

GUROBI

‘:’P VS N? OPTIMIZATION

 Problem class P:

* Problem instance is solvable in worst-case runtime that is polynomial in input size
« Examples:

« Sorting

« Shortest path

« Maximum weighted matching

* Linear program

* Problem class VP

 Solution for given problem instance can be verified in polynomial time w.r.t. instance size
» Obviously, P € NP

* Problem class NP-complete:

« P e NPis NP-complete if every problem in NP can be transformed into P using a polynomial transformation
* Examples:

 Satisfiability problem (SAT)

« Knapsack

» Traveling salesman problem

* Maximum weighted clique

* Integer program

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 4

GUROBI

OPTIMIZATION

P vs NP in Practice

* Theory says:
e Linear programming is easy
* Interior point algorithm has polynomial worst-case runtime
* Integer programming is hard
« Branch-and-cut has exponential worst-case runtime
» exponential in number of integer variables
» Let's look at problem sizes and runtime for real-world problem instances
« LP test set has 2397 instances
« MIP test set has 7030 instances
« Gurobi9.5.0
 Intel Xeon CPU E3-1240 v3 @ 3.40GHz
« 4 cores, 8 hyper-threads
« 32 GBRAM
« Time limit of 10,000 seconds

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 5

Linear Programming SrTmoson

Full test set
10,000 Ooo oo o ® ° o
Smallest LP that Gurobi cannot solve in 10k sec
9,000 Asf | e regular termination
Original model: . Biggest LP that Gurobi can solve in 32GB RAM
* 345,684 constraints out—of—memoryl
8,000 . . [‘
(15(9);'2(152 variables Original model:
000 z non-zeros e 3,355,357 constraints
’ fl ved model: * 1,419,480 variables
| crEseleslmenzs « 316,017,220 non-zeros

6,000 * 344,505 constraints
[J) ° i
E (15(9)82?2 variables Presolved model:
@ 5,000 /355 NON-ZEr0s . + 1,839,484 constraints
% | . it _ * 595,734 variables
2 nterior point linear system: o E B 5 Mo s

4,000 e ~26,580,000 AAT non-zeros [

R * "3,818,000,000 factor non-zeros Interior point linear system:
3,000 _— o ' + ~13,430,000 AAT non-zeros
0 vmg st'at|st|_cs.. . . o . * ~69,620,000 factor non-zeros
5 000 * hit time limit after 19 interior point iterations
! [e 4 - e T T
o o ‘ Solving statistics:
1,000 |& :..: .S, . ° * 102 interior point iterations

7‘?3 .y ‘ « 193.9 seconds
*‘. e_ o0 o ° ° T
0 h YA WAL A Ce ot o« e ©
0 100,000,000 200,000,000 300,000,000 400,000,000 500,000,000 600,000,000

Number of non-zeros

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 6

Linear Programming

Full test set

Solving time

10,000

9,000

8,000

7,000

6,000

5,000

4,000

3,000

2,000

1,000

100,000,000

300,000,000 400,000,000

Number of non-zeros

200,000,000

500,000,000

GUROBI

OPTIMIZATION

e regular termination

® out-of-memory

. .
600,000,000

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 7

Linear Programming

Models with up to 100 million non-zeros

Solving time

10,000

9,000

8,000

7,000

6,000

5,000

4,000

3,000

2,000

1,000

GUROBI

OPTIMIZATION

e regular termination

® out-of-memoryj
very roughly looks
like a linear runtime
behavior
[°
[] [} : . Iy
80,000,000 90,000,000 100,000,000

10,000,000 20,000,000 30,000,000 40,000,000 50,000,000 60,000,000 70,000,000
Number of non-zeros

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 8

Mixed Integer Programming SresTon

Full test set

10,000 h—— oo o oan ° °
Smallest MIP that Gurobi cannot solve in 10k sec

[]
9,000 s e e regular termination
%' Original model: v outof
. g out-or-memory
8,000 2 74 con_stralnts ' .
!. * 56 variables (28 general integers)
s * 168 non-zeros
7,000 ¢
g ° Biggest MIP that Gurobi can solve
Presolved model:
6,000 t.; * 14 constraints Original model:
(4] - - J
g 4 : 28 variables (20 general integers) . 5,088,000 constraints
2 5,000 i non-zeros - 3,379,700 variables (all binary)
= Y) o ¢ 328,860,900 non-zeros
A 2000 B Solving statistics:

 hit time limit after 140,132,462 search nodes |

Presolved model:
* final MIP gap is 0.09% resolvea moae

. .
3,000 ' : 0 con;tramts
oo e Ovariables
* 0 non-zeros
2,000 e ¢ e .
,
[] . o o
oot ° Solving statistics:
(] []
1,000 * . ° o - * solved by presolve
e 3. et % P ¢ T * 69.8 seconds
L4 04 ° ° . (] .
0 g X ;o o et L @ ° P ° : @ . .
0 100,000,000 200,000,000 300,000,000 400,000,000 500,000,000 600,000,000

Number of non-zeros

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 9

Mixed Integer Programming

Models with up to 100 million non-zeros

Solving time

10,000

9,000

8,000

7,000

6,000

5,000

4,000

3,000

2,000

1,000

L 4 otme she []
} ¢ ‘ °
!.' ° °
e o ©
2 :
s,
'.
$° .
4
o .
° °
[)
° [)
°
[)
°
[) M ’
[)
. °
[)
° .
[)
\ ° .
® e o -
.. 4 [) [) ¢
[)
o [)
. :‘ f.o o ®
° } .o R ° e ° PR
[) [)
.fo‘o .°.‘° ‘op’..'.ﬁ E I :
0 10,000,000 20,000,000 30,000,000

°
[)
L]
L]
° s &
40,000,000

50,000,000

Number of non-zeros

° oo oo
°

[]

[]

.

° ° .
° s ° ©
o o .
60,000,000

70,000,000

80,000,000

GUROBI

OPTIMIZATION

e regular termination

® out-of-memory

90,000,000 100,000,000

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 10

GUROBI

Mixed Integer Programming

Models with up to T million non-zeros

Solving time

10,000

9,000

8,000

7,000

6,000

5,000

4,000

3,000

2,000

1,000

13 . ° e regular termination
o o ° ‘ ‘ e out-of-memory
% . ®
° o ® ® ° ° °
[) ¢ . . . []
.o . . No obvious relation between size
s, . . (# non-zeros) and solve time
[] [] ° ... L] [] ° ° .. ° R .. °
: %o ° ‘ ° © °
Ty L . o . ¢ ° o ° ‘ . . °
“.0. o.: ° ., ° .o o L] ° :
.:::o .. . ® . . .0 " . ° .
:.0 : ® o ° ° ° ® e o o ° ° o . . ¢
‘.‘.....‘) .’: ° ° . o ° ° ° o ° o ° . o o0 © ¢ °
%S o0 ° SEP o o o lo oo . L ° . F)
’.’ °, % ‘o o °° : ® e '. ° L o ® .. ° .. o ° ‘ ° ° S ..l L ° ° ‘
.:.u . ~o:o.o.. -° 0 e . ., oo: J. R 20 e e ® ens ° .
xwur*w‘ﬁ‘od“ ® oome o8t o. w mee ~?“" o’b'.'- weW o 0‘ “-‘. o
0 100,000 200,000 300,000 400,000 500,000 600,000 700,000 800,000 900,000 1,000,000

Number of non-zeros

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 11

Mixed Integer Programming

Full test set

Solving time

10,000?"-- o oo

9,000

8,000

7,000

6,000

5,000

4,000

3,000

2,000

1,000

o

* Smallest MIP that Gurobi cannot solve in 10k sec

Original model:
* 19,299 constraints
e 1,012,110 variables (17 binaries)
* 4,419,580 non-zeros

Presolved model:
e 19,111 constraints
* 1,000,825 variables (17 binaries)
e 4,299,915 non-zeros

Solving statistics:
* hit time limit after 72 search nodes
* final MIP gap is 2.40%
* used 15,543 simplex iterations per node

2T IPRRC NS VARI® DY C T EU 08 100,00 0003 GRS C

FA”
e

o W}.-’...

[X o XA
[}
)
%
(J
°s,
[]
[]

20,000,000 40,000,000

GUROBI

OPTIMIZATION

e regular termination

out-of-memory

Biggest MIP that Gurobi can solve in 32 GB of RAM

Original model:
e 5,088,000 constraints
* 49,703,956 variables (55,139 binaries, 49,647,900 general integers)
* 328,860,900 non-zeros

Presolved model:
* 0 constraints
* Ovariables
* 0 non-zeros

Solving statistics:
* solved by heuristic (pure feasibility problem)
» 87.5seconds

60,000,000 80,000,000 100,000,000 120,000,000

Number of integer variables

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 12

Mixed Integer Programming

GUROBI

OPTIMIZATION

Models with up to 10 million integer variables

Solving time

10,000 ep @e0 000 @e 00 oc0oem® o o ° o o ®® o o e oo oo o ° 3 ®@e o o
} .
°
2,000 i & ° ° R e regular termination
‘.= ® out-of-memory
8,000 § . ' |
°® °
® o
° °
7,000 ¢
: Y
o
° ° °
6,000 !: Ces o . .
'Y . °
| &t ° . °
5,000 l‘, > .
.. 3 [) [°
P ° °
4,000 E .,
° ° °
° ° ° °
J : o © :
3,000 - - .
° ? °
2,000 . o« o . e |
[] o
° e ¢ ° g o ©
-) ° R
.
1,000 . L ¢ R .
° . L] (1 ° ° °
(3 0. °e8 0- N 0, :.. N ° ‘ ° (X} ¢ ° ° ° ° L °
0 hu o onnNe ¢ & w 0%, , hd L. TP .)) . o ® % ° °
0 1,000,000 2,000,000 3,000,000 4,000,000 5,000,000 6,000,000 7,000,000 8,000,000 9,000,000 10,000,000

Number of integer variables

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 13

Mixed Integer Programming

Models with up to T million integer variables

Solving time

10,000

9,000

8,000

7,000

6,000

5,000

4,000

3,000

2,000

1,000

v csam oo w @ - o ® oo ®oo ®mee wooe o
Se, o
’ (]
%
.
.0 © 0] ‘ o
..s. R . °
° ° L °
® .
; ° ¢ ° e °
€ . .
*° °
Ne o ° °
oe ° °
[4 L4 [°
° . ° .
oo (] o o °
]
' .
..0.... ..O ° °
° .0 ° ; .o ® ° °
° o o
%3, ° - ‘ .
° ° L4 %
:.o. ° ° : ° ° R °
. . . ° ¢
. °
. ‘ ° ¢ . : °
. °
.
° .3. o o ° °
o %, ° 4 ° ° ¢ °
LI tH o0’ o . . H ¢ . :
° °
';%‘.o.fou‘oom.o. 000 % %oe ® %o oooo. % o.:o % 8 %% o 'o.. 0. o ®
0 100,000 200,000 300,000 400,000 500,000 600,000 700,000

Number of integer variables

GUROBI

OPTIMIZATION

L _J *® L oD 000 @ ¢ © 0000 0 0O e o0
e regular termination
® out-of-memory
L[]
L[]
hd L o © . ‘ % ° .o.
800,000 900,000 1,000,000

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 14

Mixed Integer Programming SresTon

Models with up to 100,000 integer variables

10,000 = -y e ese o0 Xy 0B EIM GDEL 0D WO OO W ED O WOSW®E®O © W °WO
Y . ’ ‘ ‘ °
o ©
. : o o R e regular termination
.
® out-of-memor
8000 T - 3 ’ . : -
, °
°
°®
ol e . .
7,000 | o H
° ° . ° [
° 'y ° °
6000 | - °° : ‘) :
) o .
g . o 1 .
= : ° L] L4 ° °
oo
g 5,000 , .« % : . . ° . °
= ° °
UO') g ° e o © 1 ’ ° ¢
° .
4,000 oo : . S o ° ...o 3 °
13 L4 ° ° °
’... ‘ ° ‘ L4 ¢ ° ° 1 °
3,000 | % o s ° .
’ . o . ° ° :
e ® . ° °
°
2,000 *
° ? ° ° ® .
° . ° ° ° o
° ° ° °
1,000 s . e o °
! H ° o e $o . o ° °
° e ° ¢ oo, ¢ 3 ° © o. © o o° o: ° ° ° ° °
d s o~ oo o [[} . ° ° o o o %393
0 . M‘um.fzo"d..h ‘..?o\ooh 0..£00 .00 e’ le o 00:00. 0‘00 00‘. Q..o oooo.:o .fg o See o:‘: oo.o‘ .oo
40,000 50,000 60,000 70,000 80,000 90,000 100,000

Number of integer variables

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 15

Mixed Integer Programming

GUROBI

OPTIMIZATION

Models with up to 10,000 integer variables

Solving time

10,000

9,000

8,000

7,000

6,000

5,000

4,000

3,000

2,000

1,000

— > o Y x 1y ' X '] L] L XY - -
o. . ° °
.. ° ° ‘ e regular termination
R ‘ ® out-of-memory
o ‘ * .. °
. e ‘ . No obvious relation between size
- . * (#integer variables) and solve time o
: . . 0. - ° . () ° ° ° .
. D . . What about the theoretical ’ .
N B c e exponential worst-case runtime? : ‘ : . ’
. ° | b ! . ! s o : . ¢ .
° ° Ce ’: P ¢ o.o ¢ ° ! s ° ° ° °, * o : ¢

Number of integer variables

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 16

GUROBI

MIP is WV P-complete: Theory vs Practice

Models with up to 100 integer variables

Solving time

10,000

9,000

8,000

7,000

6,000

5,000

4,000

3,000

2,000

1,000

° regularterm'nat'ln

e out-of-memory

worst-case boun

o . Let’s zoom out a little bit again...
. . : . ° [} : :
° e o © ° . ° .0 ¢ : oo . ° o % . | !
10 20 30 40 50 60 70 80 90 100

Number of integer variables

Worst-case bound for pure binary programs with evaluating 1 billion solutions per second: 2™/10°

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 17

GUROBI

MIP is V' P-complete: Theory vs Practice

Models with up to 10,000 integer variables

Solving time

10,000

9,000

8,000

7,000

6,000

5,000

4,000

3,000

2,000

1,000

° ° e regular termination
e out-of-memory

worst-case bound

°
° ° °
°
s °
° °
° ° °
° ° .
e o ° .
° ° : ® . ‘
L) : ° ° °
° ° ° ° ° ° Ld
[] . °
. ° °

° ° °® * ° ‘ ‘

° o ® o o, ° .. % ° (] .
o ° ° o® ° ° © ° o
° ° o o ° °
.. .o. P .o..:. . ..o ° °! .‘. ° .. e ? 0’ ° :.
°
AR VIR L ROIRTE ST IS TR ST T N SRy Jr A Apr SO U2 LI S

4,000 5,000 6,000 7,000 8,000 9,000 10,000

Number of integer variables
Worst-case bound for pure binary programs with evaluating 1 billion solutions per second: 2™/10°

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 18

MIP is VP-complete: Theory vs Practice

Models with up to 50 million integer variables

Solving time

10,000

9,000

8,000

7,000

6,000

5,000

4,000

3,000

2,000

1,000

5,000,000

10,000,000

15,000,000

20,000,000

* number of integer variables:
* theoretical worst-case runtime:

e Gurobi runtime:

20,801,010
~10©:000,000 gaconds

514 seconds

Q L4

25,000,000

Number of integer variables

30,000,000

35,000,000 40,000,000

GUROBI

OPTIMIZATION

e regular termination
e out-of-memory

e \\/Orst-case bound

45,000,000 50,000,000

Worst-case bound for pure binary programs with evaluating 1 billion solutions per second: 2™/10°

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 19

GUROBI
Consequences for MIP SOlverS OPTIMIZATION

« MIP solvers employ various combinatorial and number theoretic sub-algorithms

« Some of these algorithms have polynomial runtime
 Does this mean those will always be fast enough?
« No! Even a quadratic algorithm is too slow in many situations!

« For example, pair-wise comparison to identify parallel rows in a matrix A € R™*"™ needs
O (m?n) operations

« Always think about big models!

« 1 million rows means about 500 billion pairs of rows to check

* Need an algorithm that is faster in practice, not necessarily in asymptotic behavior
« Need to include safeguards against quadratic overhead for corner cases

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 20

GUROBI
Consequences for MIP SOlverS OPTIMIZATION

« MIP solvers employ various combinatorial and number theoretic sub-algorithms

« Some of these algorithms have exponential runtime

e Does this mean those will never be useful?

« No! Exponential worst-case runtime does not say anything about practical problem
instances!

« Often, we only need to solve small combinatorial problem instances to optimality
* In most cases, a heuristic that often finds good solutions is good enough

* The algorithm design should be targeted towards practical problem instances
« But always think about worst-case behavior to include safeguards in your codel!
« Quadratic loops are not always easy to spot in your code
» They constitute one of the most frequent “performance bugs” that we need to fix

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 21

Example: Finding Neighbors in Matrix

GUROBI

OPTIMIZATION

Many algorithms in our code do something with some variable, and then need to

update some data for the variable’'s neighbors

Definition: in AeR™ ™ two columns j;, j, are neighbors if Afle.,jz + 0

« Thus, the variables are neighbors if they appear together in at least one constraint

Algorithm to find neighbors of j;:
1.
2. For each non-zero element a; ;, # 0iNA. ;.

(a) Foreach non-zero elementa;;, # 01in A; ..

Now consider a constraint with kK non-zero elements

SetN =0

(i) SetN:=Nu{j,}

J1
. Lo

« If our algorithm touches each of the k variables in the constraint and each time needs
to find the neighbors of the current variable, we perform k? operations.

« No problem for k = 1000, but very bad for k = 1,000,000

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 22

‘ Sparsity Patterns

200 4

300

500 H

30n20b8

8000 10000

10 ...

15 47
20 41—

25

30

o= _
0 10000 20000 30000 40000 50000 60000 70006 BOOCQO

nw04

2000

4000

6000

8000

10000

12000

14000

16000

x&&g&%\
@Y&%&&

LT

20000 40000 60000 80000 100000 120000 140000

bab2

200 4
400 A
500
800

1000 4}

1200 -

1400 -

1600 -

1800 —+

500

1000

1500 2000

gapl0

2500

3000 3500

4000

GUROBI

OPTIMIZATION

200 o

400 +

600 —

1000 +

1200 +

1400

1600 +

1800 —

0

500 1000 1500 2000 2500
lotsize

5000 +

10000 4

15000 —~

20000 o

25000 +

30000 o

35000 +

40000

45000 o

/

=

== ==
== ==

I

=
& i

\\\\

5000 10000 15000
unitcal_7

T
20000 25000

pictures from miplib.zib.de

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 23

Sparsity Statistics

Full MIP test set

600,000

500,000

400,000

300,000

Number of non-zeros/column

200,000

100,000

0 L—-.o

0

100,000

200,000

300,000

400,000

500,000

Number of non-zeros/row

600,000

700,000

800,000

GUROBI

OPTIMIZATION

Median:
* 5.60 non-zeros/row
* 5.36 non-zeros/column

Average:
* 758.48 non-zeros/row

* 215.09 non-zeros/column

900,000 1,000,000

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 24

GUROBI

Sparsity Statistics

MIP test set without 5% of largest nz/row and 5% of largest nz/col ratios

Number of non-zeros/column

70

60

50

40

gy

.‘ooo o .'.;o.o 200 o,

N

.
L]

° e ¢
« ° oe .\ ‘ .
oo % Median:
° 0 %o °
© « o, . d * 5.13 non-zeros/row
|* , . . : * 5.09 non-zeros/column
o o ° o3 °
o o ’ eee g ’ . Average:
©E, e © e : . * 18.65 non-zeros/row
s . . * 9.01 non-zeros/column
Conclusion:
. . : * Design your algorithms to be very fast with 2-30 non-zeros
e per row and 2-10 non-zeros per column
. . o L. . * But avoid runtime explosion for row or column lengths of
¢ ke ot .0 " 1000 and larger
oo <. e g e . ¢ . o) . e C. °
150 200 250

Number of non-zeros/row

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 25

GUROBI
Implementation Considerations

Algorithms need to be implemented in C
» Gurobi needs to support ancient and strange platforms like AlX, Solaris, or Windows 32

« C compiles on every platform
« Anything else (including C++) can get messy

Algorithms often need to work on Gurobi's internal data structures

« |fan aI%orithm is called frequently, we cannot afford translating our data structures into
those that the algorithm works on

Algari}hms need to be tuned to the structures and sizes that appear in practical MIP
models

Gurobi provides malloc callbacks that Gurobi should use for its memory management

Conclusion: need to implement all algorithms ourselves
« Nice consequence: a lot of fun!

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 26

GUROBI

OPTIMIZATION

Combinatorial
Algorithms

Median algorithm

Depth first search
Shortest path

Min cut / max flow
Minimum vertex separator
Max clique

Dynamic programming
Graph automorphism
Union find

Median Algorithm

GUROBI
Single constraint linear program

OPTIMIZATION

» Consider a single constraint linear program with bounds on the variables:
max clx
st. alx < b
Xj € [0, uj] for all j

« This can be solved by sorting the elements: =+ > 2 > ... > =

a a an
 Then, the solution is

_ _ _ 1 k—1 L _
X1 =Uqgyoeey Xjg—1 = Ugg—1, X = a_k(b - Zj=1 ajuj), Xpg1 =" =X = 0

« But sorting is too slow: O(n - log(n))

* Median algorithm can find critical element x;, in O(n) steps

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 28

Median Algorithm Sr N

Dual simplex ratio test with bound flipping

- Dual pricing selects infeasible basic variable x; to leave the basis l"bjec“"e

- Ratio test then selects non-basic variable x; to enter the basis
« Geometrically: follow ray in dual space until first dual constraint is hit
 Finding first dual constraint that is hit means to find smallest value in list of “ratios”

- Butinstead of letting x; enter the basis we may flip x; to its opposite bound
» Only possible if this flip in the primal space keeps x; infeasible
« |f flip is valid, we can continue following this ray until next dual constraint is hit

* Thus, we have:
« Theinfeasibility of x; is our budget
« For each ratio test candidate x; we calculate how much of budget a bound flip costs

« Simple algorithm would be to sort by ratio, then flip candidates until budget is exhausted and let the
critical element enter the basis

* Replace sorting by median algorithm to get linear runtime

« Performance impact on dual simplex algorithm:
» 8.0% slower overall with sorting instead of median
* 16.6% slower on models that take at least 10 seconds to solve

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 29

GUROBI

Median Algorithm

Domain propagation

« Basic domain propagation for single constraint
apgx, + a'x < b
xXj € [lj,uj] forall j
» Relax constraint for other variables

apxo + min{a’x|x € [Lu]} < b

* Yields bound for x,
® |fa0>02x0Sb'
® |fa0<02x02b'

: , 1 . 1
© With b’ = 2 (b — min{a"xlx € [Lul}) = = (b = S50 411 — Tac0 a2

« Can we get stronger propagation by considering more than one constraint?

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 30

Median Algorithm Sr N

Domain propagation

« Domain propagation using two constraints
» Pick two constraints of the MIP

ApXo + aTx < b
alx < b
Xj (S [lj, u]] for all]

that have some overlap (i.e, a’a # 0)

e Relax constraint for other variables

AgXo + min{aTx|c_sz < b,x €[l u]} < b

* Yields bound for x,
® |fa0>0:x0Sb,
o |fa0<02x02b'
. ; r— Xy i (T |ST 5
With b" = ” (b mln{a x|a x<bxe€ll u]})

» Inner problem min{a”x|a"x < b, x € [I,u]} is a single constraint LP with bounds

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 31

GUROBI

Median Algorithm

Writing search tree nodes to disk

If search tree grows too large, store uninteresting nodes to disk
 Uninteresting: nodes with large dual bound

Pick number of nodes we want to store to disk

Nodes are not fully sorted, but stored in a heap

Use median algorithm to find dual bound threshold in node heap

Move all nodes with larger dual bound to disk, keep others in heap

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 32

Depth First Search SN

Disconnected components

Consider a MIP with disconnected components

min c'x + c’'x
s.t. Ax < b
Ax < b
X e R"
¥ € R
xi , X € I foralljel,jel

Solving this as a single MIP with branch-and-cut has worst-case runtime 0(2"*")

Solving the two MIPs separately has worst-case runtime (2™ + 2m)

Significant speed-up also occurs in practice

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 33

Depth First Search SN

Disconnected components

« How to find disconnected components in matrix A?
« Consider bipartite graph

« Depth first search in this graph finds disconnected components of A

« Data structure: store A twice
* |n row-wise sparse compressed form
* |In column-wise sparse compressed form

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 34

Depth First Search SN

Biconnected components

« Assume the bipartite matrix graph has an articulation point

« |f this articulation point is a binary variable y € {0,1}:
« Solve smaller component as MIP for y = 0 and y = 1: optimal solutions x° and x*!
» Aggregate variables: %; == x° 4+ (' — x°)y

 Find articulation points: Tarjan's Algorithm for strongly connected components
« Need to use non-recursive version of Tarjan (recursion depth may exceed stack size)

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 35

Shortest Path GUROB!

Invalid cycle cuts

« With linear and SOS1 constraints you can model so-called indicator constraints

z=0-x;=x; or z=0->x #x

for binary variables z, x; and x;
« Such constraints appear in some practical applications

« For example, MIPLIB model toll-like" is about the balanced subgraph problem
» Appears in bioinformatics: finding monotone subsystems in gene regulatory networks
« See http://miplib.zib.de/instance_details_toll-like.html and references

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 36

http://miplib.zib.de/instance_details_toll-like.html

GUROBI

Shortest Path

Invalid cycle cuts

« Consider a set of indicator constraints

7z =0->x; =x; fork €E
7z =0->x; #xj, forkelU

« Then, for an inequality indicator
Zgt = 0> x5 # Xt

and a path of constraints

Zsk, = 0 —= Xx Xk,

Ty = 002 Xy T X e (=, %)
g)

Zgt = 0 = x = X

with an even number of inequality indicators, we can see that
Zst + ZS,k1 + Zk1,k2 + -+ an,t >1

is valid.

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 37

Shortest Path GUROB!

Invalid cycle cuts

» Cut separation algorithm for zg, + zg ., + 2y, + -+ 2k, = 1
» Start with zg, with fractional LP solution z;, & {0,1}
« Search for shortest paths - k; - - >k, > t
* Lengths given by the LP values z; ;
« Only consider paths with even number of inequality indicators e

 Trick for even number of inequality indicators
« Two copies of graph: G; and G,
 Equality indicators connect vertices within each copy
 |Inequality indicators connect vertices between copies
* Nodes s and t only exist in G,

» Use Dijkstra’s algorithm to find shortest path

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 38

Shortest Path GUROB!

Invalid cycle cuts

» Cut separation algorithm for zg, + zg ., + 2y, + -+ 2k, = 1
» Start with zg, with fractional LP solution z;, & {0,1}

« Search for shortest paths - k; - - >k, > t
* Lengths given by the LP values z; ;

« Only consider paths with even number of inequality indicators 9
 Trick for even number of inequality indicators Zs,1
« Two copies of graph: G; and G,
 Equality indicators connect vertices within each copy 5 212
 |Inequality indicators connect vertices between copies Zg ¢

* Nodes s and t only exist in G,

» Use Dijkstra’s algorithm to find shortest path

ZS,t + ZS,l + Zl,Z + Z2’3 + Z3,t = 1

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 39

Shortest Path GURQE
Mod-2 and mod-k cuts

* Very similar construction possible to separate mod-2 and mod-k cuts
 Caprara and Fischetti (1996): {0,%2}-Chvatal-Gomory cuts

 Caprara, Fischetti and Letchford (2000): On the separation of maximally violated mod-
k cuts

« Andreello, Caprara and Fischetti (2007): Embedding {0,%2}-Cuts in a Branch-and-Cut
Framework: A Computational Study

« But Gurobi uses different approach for these cuts
« Gaussian LU factorization in mod-k space

« Koster, Zymolka and Kutschka (2009): Algorithms to Separate {0,%}-Chvatal-Gomory
Cuts

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 40

Shortest Path SN
Other applications in MIP

« Network heuristic
 Find negative cost cycles to improve solution for problems with network structure

* Network simplex algorithm
« Find negative cost cycles to detect negative reduced costs for pricing selection

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 41

GUROBI

Min'CU.t / MaX_FlOW OPTIMIZATION

Network cut separation

 Fixed charge network flow problem

Flow conservation constraints: Y. cs+u) fa — Zaes—@) fa = dv
Arc capacity constraints: fo—€CaZg <0

Flow variables: fao=0

Arc selection variables: z, € {0,1}

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 42

. GUROBI
MlIl-Cllt / MaX-FlOW OPTIMIZATION
Network cut separation

* Network cut:

4y

« Capacity on network cut must be large enough to transport demand from S to T plus the flow that goes from T

back to's:
> cazam) faz) dy

L agé*(s) a€s~(s) ves : "
 Dividing by any of the ¢, and applying mixed integer rounding yields cut-set inequalities

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 43

GUROBI

OPTIMIZATION

Min-Cut / Max-Flow

Network cut separation

» Heuristic to separate network cuts
« Assign arc weights to be w, = s; — |}
» LP slack value s} for capacity constraint on arc a
» Dual solution value m; for capacity constraint on arc a
« Search for minimum weighted cut in resulting graph

» Note that weights can be negative!
« Minimum cut problem with negative weights is NP-hard

 Use heuristic for minimum cut problem
« Tryall single node sets S = {v}
 Additionally, contract nodes in non-increasing order of weights w, until only 5 super nodes

are left; then enumerate all cuts
Bienstock, Chopra, Gunlik, Tsai (1998): Minimum cost capacity installation for multicommodity

network flows
Gunlik (1999): A branch and cut algorithm for capacitated network design problems

Achterberg and Raack (2010): The MCF-Separator — Detecting and Exploiting Multi-Commodity
Flow Structures in MIPs

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 44

Minimum Vertex Separator SN

Nested-dissection fill-reducing ordering for interior point LP solver

« Runtime for interior point LP solver is dominated by cost of computing a sparse Cholesky
factorization on AAT

 Cost depends heavily on elimination order (ordering of rows of A)
« Some orderings can lead to catastrophic fill-in

« Problem of finding optimal fill-reducing ordering is NP-complete
« Yannakakis (1981): Computing the Minimum Fill-In is NP-Complete

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 45

Minimum Vertex Separator

Nested-dissection fill-reducing ordering for interior point LP solver

« Adjacency graph in sparse Cholesky factorization

GUROBI

OPTIMIZATION

« Simple correspondence between symmetric sparse matrix (structure) and adjacency

graph

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 46

Minimum Vertex Separator SN

Nested-dissection fill-reducing ordering for interior point LP solver

« Adjacency graph in sparse Cholesky factorization

« Simple correspondence between symmetric sparse matrix (structure) and adjacency
graph

» (Gaussian elimination produces cliques

33,8 <. P
R, T{

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 47

Minimum Vertex Separator

Nested-dissection fill-reducing ordering for interior point LP solver

» Nested dissection ordering heuristic
 Divide and conquer
» Vertex separators disconnect the problem

Adjacency graph

T

Vertex separator

GUROBI

OPTIMIZATION

Sparse matrix

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 48

Max Clique Sr N

Cligue merging in presolve

« Very common constraints in MIP are set packing constraints
Xg+ o+ x <1

for binary variables x;
* Multiple set packing constraints can be merged, for example:

X1 + X9 < 1
X1 + X3 < 1
X9 + X3 < 1

can be equivalently represented by

Xy, + x + x3 < 1

« The latter has a much stronger LP relaxation than the former
« Forexample, x; = x, = x5 = 0.5 is feasible for the former, but not for the latter

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 49

Max Clique Sr N

Cligue merging in presolve

Consider stable set relaxation of a MIP

« Graph G = (V, E) with nodes V being the (complemented) binary variables of the
problem and edges E = {(i, j)|x;, x; share a set packing constraint}

For each set packing constraint S € V find large clique € 2 S
« Ideally, find maximum clique
« Max clique is NP-complete
« Use heuristic to find large clique

Replace X jesx; < 1Dy Yiecx <1

Discard all set packing constraints with S' € C

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 50

Max Clique

Cligue merging in presolve

« Many heuristics for max clique available
- E.g, Robson (2001): Finding a maximum independent set in time 0(27/#)
« But: problemis not givenas G = (V,E)

* Instead, problemis given as G = (V, C) with € being a set of cliques

« Edges E implicitly given as all edges defined by cliques ¢
« Consider set partitioning instances like nw04

« Constraints with 50,000 variables imply >1 billion edges!

« Cannot afford to create G = (V, E) explicitly

L

GUROBI

OPTIMIZATION

S

20 ——oTi
25 - T -
30

35

T T T T T T T T
0 10000 20000 30000 40000 50000 60000 70000 80000

nw04

picture from miplib.zib.de

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 51

Max Clique Sr N

Cligue merging in presolve

« Gurobi heuristic is a greedy clique growing heuristic to obtain a maximum clique

 Start by adding all variables of initial clique S to C

« Main operation: filter out nodes that are not neighbors of the recently added node v
* Mark all cliques in which v appears
« Check for remaining candidates if they appear in one of the marked cliques
« If not, remove candidate from list

« Speed-up for main operation:
» Consider nodes of starting clique in batches of size 32
« Use bit logic for clique membership check
« Then, add one or more of the remaining candidates to C
« Add largest set of candidates that appear in a common clique
« Safeguard: only process first 10 candidates to count clique cover number
» Otherwise, too expensive for model with 4 million set packing constraints but only 6800 variables

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 52

Max Cligque S ron

Cligue merging in presolve

« Main operation of Gurobi heuristic traverses columns of matrix
« Find neighbors by processing the rows of the matrix
« On average, this touches I + I, - [, non-zero matrix entries
- [, and [, being the average number of non-zeros in columns and rows
- If all set packing constraints are of size 2, this means to touch 3[. non-zeros

« Separate cligue merging algorithm specialized for short cliques
« Considers only set packing constraints of size up to 100
« Explicitly forms ¢ = (V, E), only storing one direction for each edge

» Reduces memory access for size 2 cliques from 31, to [,
« Typically, translates into a runtime improvement of almost 3x

« See Achterberg, Bixby, Gu, Rothberg and Weninger (2019): Presolve Reductions in
Mixed Integer Programmmg

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 53

Max Clique Sr N

Clique cuts

 Cligue cut separation very similar to cliqgue merging

 Differences:
 Start with subset of clique
* Only variables with x; > 0

« Weighted max clique
« Maximize sum of LP solution values
- Initially, only consider variables with x; > 0

- Final step is to grow clique further using variables with x; = 0

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 54

Dynamic Programming SEEp

Knapsack coefficient strengthening

» Given a knapsack constraint
ApXg + a1 x1 + -+ apx, <b
with a; > 0 and binary variables x;
« Use dynamic programming to calculate
@ = max{{¥7_; q;x; |x € {0,13"} n [0, 5]}
o = max {7, 4% |x € {0,1}"} N [0,b — a,]}

for the activity of the other variables j =1, ...,n, given x, = 00rx, = 1
e Lifting:
e fdl=b—ay—al>0: set ap == ay + d?
c fd®=b—a’>0: setb := b — dY and a, := max{a, — d° 0}

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 55

Dynamic Programming SEEp

Knapsack coefficient strengthening

Example:
3x0 + 4‘x1 + 7x2 + 8X3 < 20

Use dynamic programming to calculate

al = max{{4x1 + 7x, + 8x3|x € {0,1}"} n [0,20]} =19
al = max{{{4x1 + 7x, + 8x5]x € {0,137} N [0,17]}} - 15

* Lifting:

e fdt:=b—ay—a'=2>0: setay:=a,+d' =5

e fd°=b—-a’=1>0: setb:=b—d° =19 and a, := max{a, — d° 0} = 4
» Result:

4xo +4x1 + 7x, + 8x3 < 19

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 56

Dynamic Programming SEEp

Knapsack coefficient strengthening

» Apply coefficient strengthening
« on all knapsack constraints in an inner presolve loop
« on all cutting planes generated during the search

« Thus, this is a very heavily used algorithm!

« Dynamic programming to calculate lifting values is 0(2™)
« Apply only for knapsacks of length up to 10

« Otherwise, use more complicated algorithm that
« deals with a number of special cases,
 calculates at most 64 different values inside the dynamic program, and
 aborts if the required number of values exceeds 64

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 57

Dynamic Programming SEEp

Knapsack cover cut separation

Given a knapsack constraint
a|x, +-+apx, <b
with a; > 0 and binary variables x;

Asubset C © N = {1, ...,n}is called a coverif }.;cca; > b
Resulting cover cut: Y iecx; < |[C| — 1

Separation:
+ Set €0 = {jlxf = 0}, ¢* = {j|x] = 1}, ¢/ = N\CO\C"
« Find greedy minimum cover C foijECf ajxj < b— Zjecl a;
« Safeguard: only proceed if |C| - n < 10°
« Up-lift variables in €/\C to make cut stronger
« Down-lift variables in C* to make cut valid for N
- Up-lift variables in €° to make cut stronger

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 58

Graph Automorphism Sr N

Symmetry detection

« Abijection f: R™ — R™ is called a symmetry for a given MIP if
* it maps the feasible solution space X of the MIP to itself: f(X) = X, and
« it preserves objective values: ¢’ f(x) = cTx forallx € X

 This definition based on feasible solution space X is not practical, as deciding
whether X = @ is N¥P-complete

* |n practice: consider permutations that leave constraints and objective invariant

« A permutation m: N — N of column indices is a formulation symmetry if there exists a
permutation o: M - M of row indices such that

« n(l) =1 (i.e., m preserves integer variables),
« (c) =c,

 o(b) = b, and

* Asyn(j = Aijforallie M,jeN

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 59

Graph Automorphism Sr N

Symmetry detection

» Detecting formulation symmetries for MIP can be reduced to detecting graph
automorphisms

Bipartite graph with nodes for constraints and variables, edges for non-zero coefficients
Constraint nodes are colored with right hand side values b;

Variable nodes are colored with objective values c; (and integrality property)

Edges are colored with matrix coefficients

« Graph automorphism that respects colors is formulation symmetry of MIP

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 60

Graph Automorphism Sr N

Symmetry detection

Complexity status of graph automorphism problem is still unknown
« No polynomial algorithm known
» Not proven to be NP-hard
« See Read and Corneil (1977): The graph isomorphism disease

Efficient algorithms in practice exist
* nauty
* saucy
 bliss

Gurobi implements a variant of these algorithms

See also Pfetsch and Rehn (2019): A computational comparison of symmetry
handling methods for mixed integer programs

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 61

Graph Automorphism Sr N

Symmetry detection in Gurobi

Maintain two sets of partitions for constraints and variables
- ¥ and I to group constraints and variables that could potentially be in same orbit
- X and Il to group constraints and variables that are definitely in the same orbit

Initially, = and II are defined by node colors, £ and II are all singletons

Recursively refine ¥ and IT using hash values
« calculated from hash values of neighbor nodes

If fix point is reached, branch on a non-singleton part of £ or I
« Failed branch refines partitions and thus hash values
* Leaf branching node corresponds to valid symmetry generator and updates X and IT

Perform branching with backtracking until

-+ ¥ =¥ andII = I (generators to produce all symmetries have been found), or
« a work limit has been hit (generators produce a subset of the symmetries)

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 62

Graph Automorphism Sr N

Symmetry detection in Gurobi

» Important tricks to get good performance in practice
« Sparse updates of data structures

» Only touch those constraints and variables in refinement that have changed

» When splitting a partition class, assign new label to smaller part
Special treatment of singleton partition classes

« Remove them from graph after hash update, as their hashes won't change anymore
Use very good hash function to avoid hash collisions
Initially, check whether old symmetry generators are still valid

« |f we search for symmetry again after some problem changes
Check work limits regularly to avoid bad corner cases

* Why care?
« Exploiting symmetry yields ~20% performance improvement overall
« ~2x speed-up on affected models

. gee Achterberg and Wunderling (2013): Mixed Integer Programming: Analyzing 12 Years of
rogress

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 63

. - GUROBI
Union Find

Symmetry aggregations

Consider a symmetry generator g: N — N that is
* non-overlapping
- No x; appears in the same constraint as x,;

 or that does not affect integer variables
« Foralljelwehaveg(j) =j

Then we can aggregate all variables according to the generator:

Xj = Xg(j)

Each symmetry generator extends sets of equivalent variables

This can be efficiently recorded with a union find data structure

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 64

Other Interesting
Algorithms

Sorting

Euclidean algorithm
Hashing

Random number generation

... hot covered today

GUROBI

OPTIMIZATION

