Tobias Achterberg 26 July 2022

Combinatorial Algorithms Used Inside a MIP Solver

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved

Linear and Mixed Integer Programming

• A linear program (LP) is defined as

 $\begin{array}{rcl} \min & c^T x \\ \text{s.t.} & Ax & \leq & b \\ & x & \in & \mathbb{R}^n \end{array}$

• A mixed integer program (MIP) is defined as

$$\begin{array}{lll} \min & c^T x \\ \text{s.t.} & Ax & \leq & b \\ & x & \in & \mathbb{R}^n \\ & x_j & \in & \mathbb{Z} & \text{for all } j \in I \end{array}$$

Applications of Mixed Integer Programming

- Accounting
- Advertising
- Agriculture
- Airlines
- ATM provisioning
- Compilers
- Defense
- Electrical power
- Energy
- Finance
- Food service

- Forestry
- Gas distribution
- Government
- Internet applications
- Logistics/supply chain
- Medical
- Mining National research labs
- Online dating
- Portfolio management
- Railways
- Recycling

- Revenue management
- Semiconductor
- Shipping
- Social networking
- Sports betting
- Sports scheduling
- Statistics
- Steel Manufacturing
- Telecommunications
- Transportation
- Utilities
- Workforce scheduling
- ...

\mathcal{P} vs \mathcal{NP}

- Problem class \mathcal{P} :
 - Problem instance is solvable in worst-case runtime that is polynomial in input size
 - Examples:
 - Sorting
 - Shortest path
 - Maximum weighted matching
 - Linear program
- Problem class \mathcal{NP} :
 - Solution for given problem instance can be verified in polynomial time w.r.t. instance size
 - Obviously, $\mathcal{P} \subseteq \mathcal{NP}$
- Problem class \mathcal{NP} -complete:
 - $P \in \mathcal{NP}$ is \mathcal{NP} -complete if every problem in \mathcal{NP} can be transformed into P using a polynomial transformation
 - Examples:
 - Satisfiability problem (SAT)
 - Knapsack
 - Traveling salesman problem
 - Maximum weighted clique
 - Integer program

\mathcal{P} vs \mathcal{NP} in Practice

- Theory says:
 - Linear programming is easy
 - Interior point algorithm has polynomial worst-case runtime
 - Integer programming is hard
 - Branch-and-cut has exponential worst-case runtime
 - exponential in number of integer variables
- Let's look at problem sizes and runtime for real-world problem instances
 - LP test set has 2397 instances
 - MIP test set has 7030 instances
 - Gurobi 9.5.0
 - Intel Xeon CPU E3-1240 v3 @ 3.40GHz
 - 4 cores, 8 hyper-threads
 - 32 GB RAM
 - Time limit of 10,000 seconds

Linear Programming

Full test set

Linear Programming

Linear Programming Models with up to 100 million non-zeros

Mixed Integer Programming

Full test set

Mixed Integer Programming Models with up to 100 million non-zeros

Mixed Integer Programming

Models with up to 1 million non-zeros

Mixed Integer Programming

Full test set

Mixed Integer Programming Models with up to 10 million integer variables

Mixed Integer Programming Models with up to 1 million integer variables

Mixed Integer Programming Models with up to 100,000 integer variables

Mixed Integer Programming

Models with up to 10,000 integer variables

MIP is \mathcal{NP} -complete: Theory vs Practice

Models with up to 100 integer variables

Worst-case bound for pure binary programs with evaluating 1 billion solutions per second: $2^n/10^9$

MIP is \mathcal{NP} -complete: Theory vs Practice

Models with up to 10,000 integer variables

Worst-case bound for pure binary programs with evaluating 1 billion solutions per second: $2^n/10^9$

MIP is \mathcal{NP} -complete: Theory vs Practice

Models with up to 50 million integer variables

Worst-case bound for pure binary programs with evaluating 1 billion solutions per second: $2^n/10^9$

Consequences for MIP Solvers

- MIP solvers employ various combinatorial and number theoretic sub-algorithms
- Some of these algorithms have polynomial runtime
 - Does this mean those will always be fast enough?
 - No! Even a quadratic algorithm is too slow in many situations!
 - For example, pair-wise comparison to identify parallel rows in a matrix $A \in \mathbb{R}^{m \times n}$ needs $\mathcal{O}(m^2 n)$ operations
 - Always think about big models!
 - 1 million rows means about 500 billion pairs of rows to check
 - Need an algorithm that is faster in practice, not necessarily in asymptotic behavior
 - Need to include safeguards against quadratic overhead for corner cases

Consequences for MIP Solvers

- MIP solvers employ various combinatorial and number theoretic sub-algorithms
- Some of these algorithms have exponential runtime
 - Does this mean those will never be useful?
 - No! Exponential worst-case runtime does not say anything about practical problem instances!
 - Often, we only need to solve small combinatorial problem instances to optimality
 - In most cases, a heuristic that often finds good solutions is good enough
- The algorithm design should be targeted towards practical problem instances
 - But always think about worst-case behavior to include safeguards in your code!
 - Quadratic loops are not always easy to spot in your code
 - They constitute one of the most frequent "performance bugs" that we need to fix

Example: Finding Neighbors in Matrix

- Many algorithms in our code do something with some variable, and then need to update some data for the variable's neighbors
- Definition: in $A \in \mathbb{R}^{m \times n}$ two columns j_1, j_2 are neighbors if $A_{\cdot, j_1}^T A_{\cdot, j_2} \neq 0$
 - Thus, the variables are neighbors if they appear together in at least one constraint
- Algorithm to find neighbors of j_1 :
 - 1. Set $N \coloneqq \emptyset$
 - 2. For each non-zero element $a_{i,j_1} \neq 0$ in A_{\cdot,j_1} :
 - (a) For each non-zero element $a_{i,j_2} \neq 0$ in A_{i,j_2}
 - (i) Set $N \coloneqq N \cup \{j_2\}$
- Now consider a constraint with k non-zero elements
 - If our algorithm touches each of the k variables in the constraint and each time needs to find the neighbors of the current variable, we perform k^2 operations.
 - No problem for k = 1000, but very bad for k = 1,000,000

Sparsity Patterns

Sparsity Statistics Full MIP test set

Sparsity Statistics

Implementation Considerations

- Algorithms need to be implemented in C
 - Gurobi needs to support ancient and strange platforms like AIX, Solaris, or Windows 32
 - C compiles on every platform
 - Anything else (including C++) can get messy
- Algorithms often need to work on Gurobi's internal data structures
 - If an algorithm is called frequently, we cannot afford translating our data structures into those that the algorithm works on
- Algorithms need to be tuned to the structures and sizes that appear in practical MIP models
- Gurobi provides malloc callbacks that Gurobi should use for its memory management
- Conclusion: need to implement all algorithms ourselves
 - Nice consequence: a lot of fun!

Combinatorial Algorithms

Median algorithm Depth first search Shortest path Min cut / max flow Minimum vertex separator Max clique Dynamic programming Graph automorphism Union find

Median Algorithm Single constraint linear program

• Consider a single constraint linear program with bounds on the variables:

$$\begin{array}{rcl} \max & c^T x \\ \text{s.t.} & a^T x &\leq b \\ & x_j &\in \left[0, u_j\right] & \text{for all } j \end{array}$$

- This can be solved by sorting the elements: $\frac{c_1}{a_1} \ge \frac{c_2}{a_2} \ge \cdots \ge \frac{c_n}{a_n}$
 - Then, the solution is

$$x_1 = u_1, \dots, x_{k-1} = u_{k-1}, x_k = \frac{1}{a_k} (b - \sum_{j=1}^{k-1} a_j u_j), x_{k+1} = \dots = x_n = 0$$

- But sorting is too slow: $\mathcal{O}(n \cdot \log(n))$
- Median algorithm can find critical element x_k in $\mathcal{O}(n)$ steps

Median Algorithm Dual simplex ratio test with bound flipping

- Dual pricing selects infeasible basic variable x_i to leave the basis
- Ratio test then selects non-basic variable x_i to enter the basis
 - Geometrically: follow ray in dual space until first dual constraint is hit
 - Finding first dual constraint that is hit means to find smallest value in list of "ratios"
- But instead of letting x_i enter the basis we may flip x_i to its opposite bound
 - Only possible if this flip in the primal space keeps x_i infeasible •
 - If flip is valid, we can continue following this ray until next dual constraint is hit
- Thus, we have:
 - The infeasibility of x_i is our budget
 - For each ratio test candidate x_i we calculate how much of budget a bound flip costs ٠
 - Simple algorithm would be to sort by ratio, then flip candidates until budget is exhausted and let the critical element enter the basis
 - Replace sorting by median algorithm to get linear runtime
- Performance impact on dual simplex algorithm:
 - 8.0% slower overall with sorting instead of median
 - 16.6% slower on models that take at least 10 seconds to solve

Median Algorithm Domain propagation

• Basic domain propagation for single constraint

$$a_0 x_0 + a^T x \leq b$$

$$x_j \in [l_j, u_j] \text{ for all } j$$

• Relax constraint for other variables

 $a_0 x_0 + \min\{a^T x | x \in [l, u]\} \le b$

- Yields bound for x_0
 - If $a_0 > 0$: $x_0 \le b'$
 - If $a_0 < 0$: $x_0 \ge b'$
 - With $b' = \frac{1}{a_0} (b \min\{a^T x | x \in [l, u]\}) = \frac{1}{a_0} (b \sum_{a_j > 0} a_j l_j \sum_{a_j < 0} a_j u_j)$
- Can we get stronger propagation by considering more than one constraint?

Median Algorithm Domain propagation

- Domain propagation using two constraints
 - Pick two constraints of the MIP

$$a_0 x_0 + a^T x \leq b$$

$$\bar{a}^T x \leq \bar{b}$$

$$x_j \in [l_j, u_j] \text{ for all } j$$

me overlap (i.e. $a^T \bar{a} \neq 0$)

that have some overlap (i.e., $a^{\prime} \bar{a} \neq 0$)

Relax constraint for other variables

 $a_0 x_0 + \min\{a^T x | \bar{a}^T x \le \bar{b}, x \in [l, u]\} \le b$

- Yields bound for x_0
 - If $a_0 > 0$: $x_0 \le b'$

 - If $a_0 < 0$: $x_0 \ge b'$ With $b' = \frac{1}{a_0} (b \min\{a^T x | \bar{a}^T x \le \bar{b}, x \in [l, u]\})$
- Inner problem $\min\{a^T x \mid \bar{a}^T x \leq \bar{b}, x \in [l, u]\}$ is a single constraint LP with bounds

Median Algorithm Writing search tree nodes to disk

- If search tree grows too large, store uninteresting nodes to disk
 - Uninteresting: nodes with large dual bound
- Pick number of nodes we want to store to disk
- Nodes are not fully sorted, but stored in a heap
- Use median algorithm to find dual bound threshold in node heap
- Move all nodes with larger dual bound to disk, keep others in heap

Depth First Search Disconnected components

• Consider a MIP with disconnected components

- Solving this as a single MIP with branch-and-cut has worst-case runtime $\mathcal{O}(2^{n+\bar{n}})$
- Solving the two MIPs separately has worst-case runtime $\mathcal{O}(2^n + 2^{\bar{n}})$
- Significant speed-up also occurs in practice

Depth First Search Disconnected components

- How to find disconnected components in matrix *A*?
- Consider bipartite graph

- Depth first search in this graph finds disconnected components of A
- Data structure: store A twice
 - In row-wise sparse compressed form
 - In column-wise sparse compressed form

Depth First Search Biconnected components

• Assume the bipartite matrix graph has an articulation point

- If this articulation point is a binary variable $y \in \{0,1\}$:
 - Solve smaller component as MIP for y = 0 and y = 1: optimal solutions \bar{x}^0 and \bar{x}^1
 - Aggregate variables: $\bar{x}_i \coloneqq \bar{x}^0 + (\bar{x}^1 \bar{x}^0)y$
- Find articulation points: Tarjan's Algorithm for strongly connected components
 - Need to use non-recursive version of Tarjan (recursion depth may exceed stack size)

Shortest Path

Invalid cycle cuts

• With linear and SOS1 constraints you can model so-called indicator constraints

$$z = 0 \rightarrow x_i = x_j$$
 or $z = 0 \rightarrow x_i \neq x_j$

for binary variables z, x_i and x_j

- Such constraints appear in some practical applications
- For example, MIPLIB model 'toll-like' is about the balanced subgraph problem
 - Appears in bioinformatics: finding monotone subsystems in gene regulatory networks
 - See http://miplib.zib.de/instance_details_toll-like.html and references

Shortest Path Invalid cycle cuts

• Consider a set of indicator constraints

$$z_k = 0 \rightarrow x_{i_k} = x_{j_k} \text{ for } k \in E$$

$$z_k = 0 \rightarrow x_{i_k} \neq x_{j_k} \text{ for } k \in U$$

• Then, for an inequality indicator

$$z_{s,t} = 0 \to x_s \neq x_t$$

and a path of constraints

with an even number of inequality indicators, we can see that

$$z_{s,t} + z_{s,k_1} + z_{k_1,k_2} + \dots + z_{k_n,t} \ge 1$$

is valid.

Shortest Path Invalid cycle cuts

- Cut separation algorithm for $z_{s,t} + z_{s,k_1} + z_{k_1,k_2} + \cdots + z_{k_n,t} \ge 1$
 - Start with $z_{s,t}$ with fractional LP solution $z_{s,t}^* \notin \{0,1\}$
 - Search for shortest path $s \to k_1 \to \cdots \to k_n \to t$
 - Lengths given by the LP values $z_{i,j}^*$
 - Only consider paths with even number of inequality indicators
- Trick for even number of inequality indicators
 - Two copies of graph: G_1 and G_2
 - Equality indicators connect vertices within each copy
 - Inequality indicators connect vertices between copies
 - Nodes s and t only exist in G_1
- Use Dijkstra's algorithm to find shortest path

Shortest Path Invalid cycle cuts

- Cut separation algorithm for $z_{s,t} + z_{s,k_1} + z_{k_1,k_2} + \cdots + z_{k_n,t} \ge 1$
 - Start with $z_{s,t}$ with fractional LP solution $z_{s,t}^* \notin \{0,1\}$
 - Search for shortest path $s \to k_1 \to \cdots \to k_n \to t$
 - Lengths given by the LP values $z_{i,j}^*$
 - Only consider paths with even number of inequality indicators
- Trick for even number of inequality indicators
 - Two copies of graph: G_1 and G_2
 - Equality indicators connect vertices within each copy
 - Inequality indicators connect vertices between copies
 - Nodes s and t only exist in G_1
- Use Dijkstra's algorithm to find shortest path

- Very similar construction possible to separate mod-2 and mod-k cuts
 - Caprara and Fischetti (1996): {0,1/2}-Chvátal-Gomory cuts
 - Caprara, Fischetti and Letchford (2000): On the separation of maximally violated modk cuts
 - Andreello, Caprara and Fischetti (2007): Embedding {0,½}-Cuts in a Branch-and-Cut Framework: A Computational Study
- But Gurobi uses different approach for these cuts
 - Gaussian LU factorization in mod-k space
 - Koster, Zymolka and Kutschka (2009): Algorithms to Separate {0,½}-Chvátal-Gomory Cuts

- Network heuristic
 - Find negative cost cycles to improve solution for problems with network structure
- Network simplex algorithm
 - Find negative cost cycles to detect negative reduced costs for pricing selection

Min-Cut / Max-Flow

Network cut separation

- Flow conservation constraints: $\sum_{a \in \delta^+(v)} f_a \sum_{a \in \delta^-(v)} f_a = d_v$
- Arc capacity constraints:
- Flow variables:
- Arc selection variables:

$$f_a - c_a z_a \le 0$$

$$f_a \ge 0$$

$$z_a \in \{0, 1\}$$

Min-Cut / Max-Flow Network cut separation

Capacity on network cut must be large enough to transport demand from S to T plus the flow that goes from T back to S: ٠

$$\sum_{u \in \delta^+(S)} c_a z_a - \sum_{a \in \delta^-(S)} f_a \ge \sum_{v \in S} d_v$$

Dividing by any of the c_a and applying mixed integer rounding yields cut-set inequalities •

Min-Cut / Max-Flow

Network cut separation

- Heuristic to separate network cuts
 - Assign arc weights to be $w_a \coloneqq s_a^* |\pi_a^*|$
 - LP slack value s_a^* for capacity constraint on arc a
 - Dual solution value π_a^* for capacity constraint on arc a
 - Search for minimum weighted cut in resulting graph
 - Note that weights can be negative!
 - Minimum cut problem with negative weights is \mathcal{NP} -hard
- Use heuristic for minimum cut problem
 - Try all single node sets $S = \{v\}$
 - Additionally, contract nodes in non-increasing order of weights w_a until only 5 super nodes are left; then enumerate all cuts
 - Bienstock, Chopra, Günlük, Tsai (1998): Minimum cost capacity installation for multicommodity network flows
 - Günlük (1999): A branch and cut algorithm for capacitated network design problems
 - Achterberg and Raack (2010): The MCF-Separator Detecting and Exploiting Multi-Commodity Flow Structures in MIPs

Minimum Vertex Separator

Nested-dissection fill-reducing ordering for interior point LP solver

- Runtime for interior point LP solver is dominated by cost of computing a sparse Cholesky factorization on AA^T
- Cost depends heavily on *elimination order* (ordering of rows of *A*)
 - Some orderings can lead to catastrophic fill-in
- Problem of finding optimal fill-reducing ordering is \mathcal{NP} -complete
 - Yannakakis (1981): Computing the Minimum Fill-In is NP-Complete

Minimum Vertex Separator Nested-dissection fill-reducing ordering for interior point LP solver

- Adjacency graph in sparse Cholesky factorization
 - Simple correspondence between symmetric sparse matrix (structure) and adjacency graph

Minimum Vertex Separator

Nested-dissection fill-reducing ordering for interior point LP solver

- Adjacency graph in sparse Cholesky factorization
 - Simple correspondence between symmetric sparse matrix (structure) and adjacency graph
- Gaussian elimination produces cliques

Minimum Vertex Separator

Nested-dissection fill-reducing ordering for interior point LP solver

• Nested dissection ordering heuristic

- Divide and conquer
- Vertex separators disconnect the problem

Adjacency graph

Sparse matrix

$$x_1 + \dots + x_k \le 1$$

for binary variables x_i

• Multiple set packing constraints can be merged, for example:

x_1	+	<i>x</i> ₂			\leq	1	
x_1			+	<i>x</i> ₃	\leq	1	
		<i>x</i> ₂	+	<i>x</i> ₃	\leq	1	

can be equivalently represented by

 $x_1 + x_2 + x_3 \leq 1$

- The latter has a much stronger LP relaxation than the former
 - For example, $x_1 = x_2 = x_3 = 0.5$ is feasible for the former, but not for the latter

- Consider stable set relaxation of a MIP
 - Graph G = (V, E) with nodes V being the (complemented) binary variables of the problem and edges $E = \{(i, j) | x_i, x_j \text{ share a set packing constraint}\}$
- For each set packing constraint $S \subseteq V$ find large clique $C \supseteq S$
 - Ideally, find maximum clique
 - Max clique is \mathcal{NP} -complete
 - Use heuristic to find large clique
- Replace $\sum_{j \in S} x_j \le 1$ by $\sum_{j \in C} x_j \le 1$
- Discard all set packing constraints with $S' \subseteq C$

- Many heuristics for max clique available
 - E.g., Robson (2001): Finding a maximum independent set in time $\mathcal{O}(2^{n/4})$
- But: problem is not given as G = (V, E)
 - Instead, problem is given as G = (V, C) with C being a set of cliques
 - Edges E implicitly given as all edges defined by cliques \mathcal{C}
 - Consider set partitioning instances like nw04
 - Constraints with 50,000 variables imply >1 billion edges!
 - Cannot afford to create G = (V, E) explicitly

- Gurobi heuristic is a greedy clique growing heuristic to obtain a maximum clique
 - Start by adding all variables of initial clique S to C
 - Main operation: filter out nodes that are not neighbors of the recently added node v
 - Mark all cliques in which v appears
 - Check for remaining candidates if they appear in one of the marked cliques
 - If not, remove candidate from list
 - Speed-up for main operation:
 - Consider nodes of starting clique in batches of size 32
 - Use bit logic for clique membership check
 - Then, add one or more of the remaining candidates to *C*
 - Add largest set of candidates that appear in a common clique
 - Safeguard: only process first 10 candidates to count clique cover number
 - Otherwise, too expensive for model with 4 million set packing constraints but only 6800 variables

- Main operation of Gurobi heuristic traverses columns of matrix
 - Find neighbors by processing the rows of the matrix
 - On average, this touches $\bar{l}_c + \bar{l}_c \cdot \bar{l}_r$ non-zero matrix entries
 - \bar{l}_c and \bar{l}_r being the average number of non-zeros in columns and rows
 - If all set packing constraints are of size 2, this means to touch $3\bar{l}_c$ non-zeros
- Separate clique merging algorithm specialized for short cliques
 - Considers only set packing constraints of size up to 100
 - Explicitly forms G = (V, E), only storing one direction for each edge
 - Reduces memory access for size 2 cliques from $3\bar{l}_c$ to \bar{l}_c
 - Typically, translates into a runtime improvement of almost 3x
- See Achterberg, Bixby, Gu, Rothberg and Weninger (2019): Presolve Reductions in Mixed Integer Programming

- Clique cut separation very similar to clique merging
- Differences:
 - Start with subset of clique
 - Only variables with $x_j^* > 0$
 - Weighted max clique
 - Maximize sum of LP solution values
 - Initially, only consider variables with $x_j^* > 0$
 - Final step is to grow clique further using variables with $x_i^* = 0$

Dynamic Programming Knapsack coefficient strengthening

Given a knapsack constraint

$$a_0 x_0 + a_1 x_1 + \dots + a_n x_n \le b$$

with $a_i > 0$ and binary variables x_i

• Use dynamic programming to calculate

$$\begin{aligned} \alpha^0 &\coloneqq \max\left\{ \left\{ \sum_{j=1}^n a_j x_j \ \middle| x \in \{0,1\}^n \right\} \cap [0,b] \right\} \\ \alpha^1 &\coloneqq \max\left\{ \left\{ \sum_{j=1}^n a_j x_j \ \middle| x \in \{0,1\}^n \right\} \cap [0,b-a_0] \right\} \end{aligned}$$

for the activity of the other variables j = 1, ..., n, given $x_0 = 0$ or $x_0 = 1$

• Lifting:

• If
$$d^1 \coloneqq b - a_0 - \alpha^1 > 0$$
:
• If $d^0 \coloneqq b - \alpha^0 > 0$:
set $b \coloneqq b - d^0$ and $a_0 \coloneqq \max\{a_0 - d^0, 0\}$

Dynamic Programming Knapsack coefficient strengthening

• Example:

$$3x_0 + 4x_1 + 7x_2 + 8x_3 \le 20$$

• Use dynamic programming to calculate

$$\alpha^{0} \coloneqq \max\{\{4x_{1} + 7x_{2} + 8x_{3} | x \in \{0,1\}^{n}\} \cap [0,20]\} = 19$$

$$\alpha^{1} \coloneqq \max\{\{\{4x_{1} + 7x_{2} + 8x_{3} | x \in \{0,1\}^{n}\} \cap [0,17]\}\} = 15$$

• Lifting:

• If
$$d^1 \coloneqq b - a_0 - \alpha^1 = 2 > 0$$
: set $a_0 \coloneqq a_0 + d^1 = 5$

• If $d^0 \coloneqq b - \alpha^0 = 1 > 0$: set $b \coloneqq b - d^0 = 19$ and $a_0 \coloneqq \max\{a_0 - d^0, 0\} = 4$

• Result:

$$4x_0 + 4x_1 + 7x_2 + 8x_3 \le 19$$

Dynamic Programming

Knapsack coefficient strengthening

- Apply coefficient strengthening
 - on all knapsack constraints in an inner presolve loop
 - on all cutting planes generated during the search
- Thus, this is a very heavily used algorithm!
- Dynamic programming to calculate lifting values is $\mathcal{O}(2^n)$
 - Apply only for knapsacks of length up to 10
 - Otherwise, use more complicated algorithm that
 - deals with a number of special cases,
 - calculates at most 64 different values inside the dynamic program, and
 - aborts if the required number of values exceeds 64

Dynamic Programming

Knapsack cover cut separation

• Given a knapsack constraint

$$a_1 x_1 + \dots + a_n x_n \le b$$

with $a_i > 0$ and binary variables x_i

- A subset $C \subseteq N \coloneqq \{1, ..., n\}$ is called a *cover* if $\sum_{j \in C} a_j > b$
- Resulting cover cut: $\sum_{j \in C} x_j \le |C| 1$
- Separation:
 - Set $C^0 \coloneqq \{j \mid x_j^* = 0\}$, $C^1 \coloneqq \{j \mid x_j^* = 1\}$, $C^f \coloneqq N \setminus C^0 \setminus C^1$
 - Find greedy minimum cover C for $\sum_{j \in C^f} a_j x_j \le b \sum_{j \in C^1} a_j$
 - Safeguard: only proceed if $|C| \cdot n \le 10^9$
 - Up-lift variables in $C^f \setminus C$ to make cut stronger
 - Down-lift variables in C^1 to make cut valid for N
 - Up-lift variables in C^0 to make cut stronger

Graph Automorphism

Symmetry detection

- A bijection $f: \mathbb{R}^n \to \mathbb{R}^n$ is called a *symmetry* for a given MIP if
 - it maps the feasible solution space X of the MIP to itself: f(X) = X, and
 - it preserves objective values: $c^T f(x) = c^T x$ for all $x \in X$
- This definition based on feasible solution space X is not practical, as deciding whether $X = \emptyset$ is \mathcal{NP} -complete
- In practice: consider permutations that leave constraints and objective invariant
 - A permutation $\pi: N \to N$ of column indices is a *formulation symmetry* if there exists a permutation $\sigma: M \to M$ of row indices such that
 - $\pi(I) = I$ (i.e., π preserves integer variables),
 - $\pi(c) = c$,
 - $\sigma(b) = b$, and
 - $A_{\sigma(i),\pi(j)} = A_{i,j}$ for all $i \in M, j \in N$

Graph Automorphism Symmetry detection

Detecting formulation symmetries for MIP can be reduced to detecting graph automorphisms

- Bipartite graph with nodes for constraints and variables, edges for non-zero coefficients
- Constraint nodes are colored with right hand side values b_i
- Variable nodes are colored with objective values c_i (and integrality property)
- Edges are colored with matrix coefficients
- Graph automorphism that respects colors is formulation symmetry of MIP

Graph Automorphism Symmetry detection

• Complexity status of graph automorphism problem is still unknown

- No polynomial algorithm known
- Not proven to be \mathcal{NP} -hard
- See Read and Corneil (1977): The graph isomorphism disease
- Efficient algorithms in practice exist
 - nauty
 - saucy
 - bliss
- Gurobi implements a variant of these algorithms
- See also Pfetsch and Rehn (2019): A computational comparison of symmetry handling methods for mixed integer programs

Graph Automorphism

Symmetry detection in Gurobi

- Maintain two sets of partitions for constraints and variables
 - $\overline{\Sigma}$ and $\overline{\Pi}$ to group constraints and variables that could potentially be in same orbit
 - $\underline{\Sigma}$ and $\underline{\Pi}$ to group constraints and variables that are definitely in the same orbit
- Initially, $\overline{\Sigma}$ and $\overline{\Pi}$ are defined by node colors, $\underline{\Sigma}$ and $\underline{\Pi}$ are all singletons
- Recursively refine $\overline{\Sigma}$ and $\overline{\Pi}$ using hash values
 - calculated from hash values of neighbor nodes
- If fix point is reached, branch on a non-singleton part of $\overline{\Sigma}$ or $\overline{\Pi}$
 - Failed branch refines partitions and thus hash values
 - Leaf branching node corresponds to valid symmetry generator and updates $\underline{\Sigma}$ and $\underline{\Pi}$
- Perform branching with backtracking until
 - $\overline{\Sigma} = \underline{\Sigma}$ and $\overline{\Pi} = \underline{\Pi}$ (generators to produce all symmetries have been found), or
 - a work limit has been hit (generators produce a subset of the symmetries)

Graph Automorphism Symmetry detection in Gurobi

- Important tricks to get good performance in practice
 - Sparse updates of data structures
 - Only touch those constraints and variables in refinement that have changed
 - When splitting a partition class, assign new label to smaller part
 - Special treatment of singleton partition classes
 - Remove them from graph after hash update, as their hashes won't change anymore
 - Use very good hash function to avoid hash collisions
 - Initially, check whether old symmetry generators are still valid
 - If we search for symmetry again after some problem changes
 - Check work limits regularly to avoid bad corner cases
- Why care?
 - Exploiting symmetry yields ~20% performance improvement overall
 - ~2x speed-up on affected models
 - See Achterberg and Wunderling (2013): Mixed Integer Programming: Analyzing 12 Years of Progress

Symmetry aggregations

Union Find

- Consider a symmetry generator $g: N \rightarrow N$ that is
 - non-overlapping
 - No x_j appears in the same constraint as $x_{g(j)}$
 - or that does not affect integer variables
 - For all $j \in I$ we have g(j) = j
- Then we can aggregate all variables according to the generator:

 $x_j \coloneqq x_{g(j)}$

- Each symmetry generator extends sets of equivalent variables
- This can be efficiently recorded with a union find data structure

Other Interesting Algorithms

Sorting Euclidean algorithm Hashing Random number generation

... not covered today

