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• A linear program (LP) is defined as

min 𝑐𝑇𝑥
s.t. 𝐴𝑥 ≤ 𝑏

𝑥 ∈ ℝ𝑛

• A mixed integer program (MIP) is defined as

min 𝑐𝑇𝑥
s.t. 𝐴𝑥 ≤ 𝑏

𝑥 ∈ ℝ𝑛

𝑥𝑗 ∈ ℤ for all 𝑗 ∈ 𝐼
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Linear and Mixed Integer Programming



• Accounting

• Advertising

• Agriculture

• Airlines

• ATM provisioning

• Compilers

• Defense

• Electrical power 

• Energy 

• Finance 

• Food service
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Applications of Mixed Integer Programming

• Forestry

• Gas distribution

• Government

• Internet applications

• Logistics/supply chain 

• Medical

• Mining National research labs

• Online dating

• Portfolio management

• Railways

• Recycling

• Revenue management

• Semiconductor

• Shipping

• Social networking

• Sports betting

• Sports scheduling

• Statistics

• Steel Manufacturing

• Telecommunications

• Transportation

• Utilities

• Workforce scheduling 

• ...



• Problem class 𝒫:
• Problem instance is solvable in worst-case runtime that is polynomial in input size
• Examples:

• Sorting

• Shortest path
• Maximum weighted matching

• Linear program

• Problem class 𝒩𝒫:
• Solution for given problem instance can be verified in polynomial time w.r.t. instance size
• Obviously, 𝒫 ⊆ 𝒩𝒫

• Problem class 𝒩𝒫-complete:
• 𝑃 ∈ 𝒩𝒫 is 𝒩𝒫-complete if every problem in 𝒩𝒫 can be transformed into 𝑃 using a polynomial transformation
• Examples:

• Satisfiability problem (SAT)

• Knapsack
• Traveling salesman problem

• Maximum weighted clique

• Integer program

𝓟 vs 𝓝𝓟
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• Theory says:
• Linear programming is easy

• Interior point algorithm has polynomial worst-case runtime

• Integer programming is hard
• Branch-and-cut has exponential worst-case runtime

• exponential in number of integer variables

• Let’s look at problem sizes and runtime for real-world problem instances
• LP test set has 2397 instances

• MIP test set has 7030 instances

• Gurobi 9.5.0
• Intel Xeon CPU E3-1240 v3 @ 3.40GHz

• 4 cores, 8 hyper-threads

• 32 GB RAM
• Time limit of 10,000 seconds

𝓟 vs 𝓝𝓟 in Practice
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Linear Programming
Full test set

Biggest LP that Gurobi can solve in 32GB RAM

Original model:
• 3,355,357 constraints
• 1,419,480 variables
• 316,017,220 non-zeros

Presolved model:
• 1,839,484 constraints
• 595,734 variables
• 5,588,540 non-zeros

Interior point linear system:
• ~13,430,000 AAT non-zeros
• ~69,620,000 factor non-zeros

Solving statistics:
• 102 interior point iterations
• 193.9 seconds

Smallest LP that Gurobi cannot solve in 10k sec

Original model:
• 345,684 constraints
• 101,564 variables
• 692,411 non-zeros

Presolved model:
• 344,505 constraints
• 100,383 variables
• 690,414 non-zeros

Interior point linear system:
• ~26,580,000 AAT non-zeros
• ~3,818,000,000 factor non-zeros

Solving statistics:
• hit time limit after 19 interior point iterations
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Linear Programming
Full test set
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Linear Programming
Models with up to 100 million non-zeros

very roughly looks
like a linear runtime
behavior
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Mixed Integer Programming
Full test set

Biggest MIP that Gurobi can solve

Original model:
• 5,088,000 constraints
• 3,379,700 variables (all binary)
• 328,860,900 non-zeros

Presolved model:
• 0 constraints
• 0 variables
• 0 non-zeros

Solving statistics:
• solved by presolve
• 69.8 seconds

Smallest MIP that Gurobi cannot solve in 10k sec

Original model:
• 74 constraints
• 56 variables (28 general integers)
• 168 non-zeros

Presolved model:
• 14 constraints
• 20 variables (20 general integers)
• 60 non-zeros

Solving statistics:
• hit time limit after 140,132,462 search nodes
• final MIP gap is 0.09%
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Mixed Integer Programming
Models with up to 100 million non-zeros
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Mixed Integer Programming
Models with up to 1 million non-zeros

No obvious relation between size
(# non-zeros) and solve time
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Mixed Integer Programming
Full test set

Biggest MIP that Gurobi can solve in 32 GB of RAM

Original model:
• 5,088,000 constraints
• 49,703,956 variables (55,139 binaries, 49,647,900 general integers)
• 328,860,900 non-zeros

Presolved model:
• 0 constraints
• 0 variables
• 0 non-zeros

Solving statistics:
• solved by heuristic (pure feasibility problem)
• 87.5 seconds

Smallest MIP that Gurobi cannot solve in 10k sec

Original model:
• 19,299 constraints
• 1,012,110 variables (17 binaries)
• 4,419,580 non-zeros

Presolved model:
• 19,111 constraints
• 1,000,825 variables (17 binaries)
• 4,299,915 non-zeros

Solving statistics:
• hit time limit after 72 search nodes
• final MIP gap is 2.40%
• used 15,543 simplex iterations per node
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Mixed Integer Programming
Models with up to 10 million integer variables
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Mixed Integer Programming
Models with up to 1 million integer variables
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Mixed Integer Programming
Models with up to 100,000 integer variables
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Mixed Integer Programming
Models with up to 10,000 integer variables
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No obvious relation between size
(# integer variables) and solve time

What about the theoretical
exponential worst-case runtime?
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MIP is 𝓝𝓟-complete: Theory vs Practice
Models with up to 100 integer variables
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Worst-case bound for pure binary programs with evaluating 1 billion solutions per second: 2𝑛/109

Let’s zoom out a little bit again...
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MIP is 𝓝𝓟-complete: Theory vs Practice
Models with up to 10,000 integer variables

Worst-case bound for pure binary programs with evaluating 1 billion solutions per second: 2𝑛/109
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MIP is 𝓝𝓟-complete: Theory vs Practice
Models with up to 50 million integer variables

Worst-case bound for pure binary programs with evaluating 1 billion solutions per second: 2𝑛/109
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• number of integer variables: 20,801,010
• theoretical worst-case runtime: ~106,000,000 seconds
• Gurobi runtime: 514 seconds



• MIP solvers employ various combinatorial and number theoretic sub-algorithms

• Some of these algorithms have polynomial runtime
• Does this mean those will always be fast enough?

• No! Even a quadratic algorithm is too slow in many situations!

• For example, pair-wise comparison to identify parallel rows in a matrix 𝐴 ∈ ℝ𝑚×𝑛 needs 
𝒪 𝑚2𝑛 operations

• Always think about big models!

• 1 million rows means about 500 billion pairs of rows to check

• Need an algorithm that is faster in practice, not necessarily in asymptotic behavior

• Need to include safeguards against quadratic overhead for corner cases
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Consequences for MIP Solvers



• MIP solvers employ various combinatorial and number theoretic sub-algorithms

• Some of these algorithms have exponential runtime
• Does this mean those will never be useful?

• No! Exponential worst-case runtime does not say anything about practical problem 
instances!

• Often, we only need to solve small combinatorial problem instances to optimality

• In most cases, a heuristic that often finds good solutions is good enough

• The algorithm design should be targeted towards practical problem instances
• But always think about worst-case behavior to include safeguards in your code!

• Quadratic loops are not always easy to spot in your code

• They constitute one of the most frequent “performance bugs” that we need to fix
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Consequences for MIP Solvers



• Many algorithms in our code do something with some variable, and then need to 
update some data for the variable’s neighbors

• Definition: in 𝐴𝜖ℝ𝑚×𝑛 two columns 𝑗1, 𝑗2 are neighbors if 𝐴⋅,𝑗1
𝑇 𝐴⋅,𝑗2 ≠ 0

• Thus, the variables are neighbors if they appear together in at least one constraint

• Algorithm to find neighbors of 𝑗1:
1. Set 𝑁 ≔ ∅

2. For each non-zero element 𝑎𝑖,𝑗1 ≠ 0 in 𝐴⋅,𝑗1:
(a) For each non-zero element 𝑎𝑖,𝑗2 ≠ 0 in 𝐴𝑖,⋅:

(i) Set 𝑁 ≔ 𝑁 ∪ 𝑗2

• Now consider a constraint with 𝑘 non-zero elements
• If our algorithm touches each of the 𝑘 variables in the constraint and each time needs 

to find the neighbors of the current variable, we perform 𝑘2 operations.
• No problem for 𝑘 = 1000, but very bad for 𝑘 = 1,000,000
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Example: Finding Neighbors in Matrix

𝑗1
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Sparsity Patterns

30n20b8 bab2 lotsize

nw04 qap10 unitcal_7 pictures from miplib.zib.de
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Sparsity Statistics
Full MIP test set
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• 5.60 non-zeros/row
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• 758.48 non-zeros/row
• 215.09 non-zeros/column
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Sparsity Statistics
MIP test set without 5% of largest nz/row and 5% of largest nz/col ratios
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Median:
• 5.13 non-zeros/row
• 5.09 non-zeros/column

Average:
• 18.65 non-zeros/row
• 9.01 non-zeros/column

Conclusion:
• Design your algorithms to be very fast with 2-30 non-zeros 

per row and 2-10 non-zeros per column
• But avoid runtime explosion for row or column lengths of 

1000 and larger



• Algorithms need to be implemented in C
• Gurobi needs to support ancient and strange platforms like AIX, Solaris, or Windows 32
• C compiles on every platform

• Anything else (including C++) can get messy

• Algorithms often need to work on Gurobi’s internal data structures
• If an algorithm is called frequently, we cannot afford translating our data structures into 

those that the algorithm works on

• Algorithms need to be tuned to the structures and sizes that appear in practical MIP 
models

• Gurobi provides malloc callbacks that Gurobi should use for its memory management

• Conclusion: need to implement all algorithms ourselves
• Nice consequence: a lot of fun!
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Implementation Considerations



Combinatorial 
Algorithms

Median algorithm

Depth first search

Shortest path

Min cut / max flow

Minimum vertex separator

Max clique

Dynamic programming

Graph automorphism

Union find



• Consider a single constraint linear program with bounds on the variables:

max 𝑐𝑇𝑥
s.t. 𝑎𝑇𝑥 ≤ 𝑏

𝑥𝑗 ∈ 0, 𝑢𝑗 for all 𝑗

• This can be solved by sorting the elements: 
𝑐1

𝑎1
≥

𝑐2

𝑎2
≥ ⋯ ≥

𝑐𝑛

𝑎𝑛

• Then, the solution is

𝑥1 = 𝑢1, … , 𝑥𝑘−1 = 𝑢𝑘−1, 𝑥𝑘 =
1

𝑎𝑘
𝑏 − σ𝑗=1

𝑘−1𝑎𝑗𝑢𝑗 , 𝑥𝑘+1 = ⋯ = 𝑥𝑛 = 0

• But sorting is too slow: 𝒪 𝑛 ∙ log(𝑛)

• Median algorithm can find critical element 𝑥𝑘 in 𝒪 𝑛 steps
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Median Algorithm
Single constraint linear program



• Dual pricing selects infeasible basic variable 𝑥𝑖 to leave the basis

• Ratio test then selects non-basic variable 𝑥𝑗 to enter the basis
• Geometrically: follow ray in dual space until first dual constraint is hit
• Finding first dual constraint that is hit means to find smallest value in list of “ratios”

• But instead of letting 𝑥𝑗 enter the basis we may flip 𝑥𝑗 to its opposite bound
• Only possible if this flip in the primal space keeps 𝑥𝑖 infeasible
• If flip is valid, we can continue following this ray until next dual constraint is hit

• Thus, we have:
• The infeasibility of 𝑥𝑖 is our budget
• For each ratio test candidate 𝑥𝑗 we calculate how much of budget a bound flip costs
• Simple algorithm would be to sort by ratio, then flip candidates until budget is exhausted and let the 

critical element enter the basis
• Replace sorting by median algorithm to get linear runtime

• Performance impact on dual simplex algorithm:
• 8.0% slower overall with sorting instead of median
• 16.6% slower on models that take at least 10 seconds to solve
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Median Algorithm
Dual simplex ratio test with bound flipping

objective



• Basic domain propagation for single constraint

𝑎0𝑥0 + 𝑎𝑇𝑥 ≤ 𝑏

𝑥𝑗 ∈ 𝑙𝑗 , 𝑢𝑗 for all 𝑗

• Relax constraint for other variables

𝑎0𝑥0 +min 𝑎𝑇𝑥 𝑥 ∈ 𝑙, 𝑢 ≤ 𝑏

• Yields bound for 𝑥0
• If 𝑎0 > 0: 𝑥0 ≤ 𝑏′

• If 𝑎0 < 0: 𝑥0 ≥ 𝑏′

• With 𝑏′ =
1

𝑎0
𝑏 − min 𝑎𝑇𝑥 𝑥 ∈ 𝑙, 𝑢 =

1

𝑎0
𝑏 − σ𝑎𝑗>0

𝑎𝑗𝑙𝑗 − σ𝑎𝑗<0
𝑎𝑗𝑢𝑗

• Can we get stronger propagation by considering more than one constraint?
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Median Algorithm
Domain propagation



• Domain propagation using two constraints
• Pick two constraints of the MIP

𝑎0𝑥0 + 𝑎𝑇𝑥 ≤ 𝑏

ത𝑎𝑇𝑥 ≤ ത𝑏

𝑥𝑗 ∈ 𝑙𝑗 , 𝑢𝑗 for all 𝑗

that have some overlap (i.e., 𝑎𝑇 ത𝑎 ≠ 0)

• Relax constraint for other variables

𝑎0𝑥0 +min 𝑎𝑇𝑥 ത𝑎𝑇𝑥 ≤ ത𝑏, 𝑥 ∈ 𝑙, 𝑢 ≤ 𝑏

• Yields bound for 𝑥0
• If 𝑎0 > 0: 𝑥0 ≤ 𝑏′
• If 𝑎0 < 0: 𝑥0 ≥ 𝑏′

• With 𝑏′ =
1

𝑎0
𝑏 −min 𝑎𝑇𝑥 ത𝑎𝑇𝑥 ≤ ത𝑏, 𝑥 ∈ 𝑙, 𝑢

• Inner problem min 𝑎𝑇𝑥 ത𝑎𝑇𝑥 ≤ ത𝑏, 𝑥 ∈ 𝑙, 𝑢 is a single constraint LP with bounds
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Median Algorithm
Domain propagation



• If search tree grows too large, store uninteresting nodes to disk
• Uninteresting: nodes with large dual bound

• Pick number of nodes we want to store to disk

• Nodes are not fully sorted, but stored in a heap

• Use median algorithm to find dual bound threshold in node heap

• Move all nodes with larger dual bound to disk, keep others in heap
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Median Algorithm
Writing search tree nodes to disk



• Consider a MIP with disconnected components

min 𝑐𝑇𝑥 + ҧ𝑐𝑇 ҧ𝑥
s.t. 𝐴𝑥 ≤ 𝑏

ҧ𝐴 ҧ𝑥 ≤ ത𝑏
𝑥 ∈ ℝ𝑛

ҧ𝑥 ∈ ℝ ത𝑛

𝑥𝑗 , ҧ𝑥 ҧ𝑗 ∈ ℤ for all 𝑗 ∈ 𝐼, ҧ𝑗 ∈ ҧ𝐼

• Solving this as a single MIP with branch-and-cut has worst-case runtime 𝒪 2𝑛+ ത𝑛

• Solving the two MIPs separately has worst-case runtime 𝒪 2𝑛 + 2 ത𝑛

• Significant speed-up also occurs in practice
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Depth First Search
Disconnected components



• How to find disconnected components in matrix 𝐴?

• Consider bipartite graph

• Depth first search in this graph finds disconnected components of 𝐴

• Data structure: store 𝐴 twice
• In row-wise sparse compressed form
• In column-wise sparse compressed form
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Depth First Search
Disconnected components

𝑐1

𝑐𝑖

𝑐𝑚

𝑥1

𝑥𝑗

𝑥𝑛

𝑎𝑖𝑗 ≠ 0



• Assume the bipartite matrix graph has an articulation point

• If this articulation point is a binary variable 𝑦 ∈ 0,1 :
• Solve smaller component as MIP for 𝑦 = 0 and 𝑦 = 1: optimal solutions ҧ𝑥0 and ҧ𝑥1

• Aggregate variables: ҧ𝑥𝑗 ≔ ҧ𝑥0 + ҧ𝑥1 − ҧ𝑥0 𝑦

• Find articulation points: Tarjan’s Algorithm for strongly connected components
• Need to use non-recursive version of Tarjan (recursion depth may exceed stack size)
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Depth First Search
Biconnected components

𝑐1

𝑐𝑖

𝑐𝑚

𝑦

ҧ𝑐1

ҧ𝑐 ҧ𝑖

ҧ𝑐 ഥ𝑚

ҧ𝑥1

ҧ𝑥 ҧ𝑗

ҧ𝑥 ത𝑛

𝑥1
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• With linear and SOS1 constraints you can model so-called indicator constraints

𝑧 = 0 → 𝑥𝑖 = 𝑥𝑗 or 𝑧 = 0 → 𝑥𝑖 ≠ 𝑥𝑗

for binary variables 𝑧, 𝑥𝑖 and 𝑥𝑗

• Such constraints appear in some practical applications

• For example, MIPLIB model ‘toll-like’ is about the balanced subgraph problem
• Appears in bioinformatics: finding monotone subsystems in gene regulatory networks

• See http://miplib.zib.de/instance_details_toll-like.html and references

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 36

Shortest Path
Invalid cycle cuts

http://miplib.zib.de/instance_details_toll-like.html


• Consider a set of indicator constraints

𝑧𝑘 = 0 → 𝑥𝑖𝑘 = 𝑥𝑗𝑘 for 𝑘 ∈ 𝐸
𝑧𝑘 = 0 → 𝑥𝑖𝑘 ≠ 𝑥𝑗𝑘 for 𝑘 ∈ 𝑈

• Then, for an inequality indicator

𝑧𝑠,𝑡 = 0 → 𝑥𝑠 ≠ 𝑥𝑡

and a path of constraints
𝑧𝑠,𝑘1 = 0 → 𝑥𝑠 ≑ 𝑥𝑘1
𝑧𝑘1,𝑘2 = 0 → 𝑥𝑘1 ≑ 𝑥𝑘2

…
𝑧𝑘𝑛,𝑡 = 0 → 𝑥𝑘𝑛 ≑ 𝑥𝑡

with an even number of inequality indicators, we can see that

𝑧𝑠,𝑡 + 𝑧𝑠,𝑘1 + 𝑧𝑘1,𝑘2 +⋯+ 𝑧𝑘𝑛,𝑡 ≥ 1

is valid.
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• Cut separation algorithm for 𝑧𝑠,𝑡 + 𝑧𝑠,𝑘1 + 𝑧𝑘1,𝑘2 +⋯+ 𝑧𝑘𝑛,𝑡 ≥ 1

• Start with 𝑧𝑠,𝑡 with fractional LP solution 𝑧𝑠,𝑡
∗ ∉ 0,1

• Search for shortest path 𝑠 → 𝑘1 → ⋯ → 𝑘𝑛 → 𝑡

• Lengths given by the LP values 𝑧𝑖,𝑗
∗

• Only consider paths with even number of inequality indicators

• Trick for even number of inequality indicators
• Two copies of graph: 𝐺1 and 𝐺2
• Equality indicators connect vertices within each copy

• Inequality indicators connect vertices between copies

• Nodes 𝑠 and 𝑡 only exist in 𝐺1

• Use Dijkstra’s algorithm to find shortest path
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• Cut separation algorithm for 𝑧𝑠,𝑡 + 𝑧𝑠,𝑘1 + 𝑧𝑘1,𝑘2 +⋯+ 𝑧𝑘𝑛,𝑡 ≥ 1

• Start with 𝑧𝑠,𝑡 with fractional LP solution 𝑧𝑠,𝑡
∗ ∉ 0,1

• Search for shortest path 𝑠 → 𝑘1 → ⋯ → 𝑘𝑛 → 𝑡

• Lengths given by the LP values 𝑧𝑖,𝑗
∗

• Only consider paths with even number of inequality indicators

• Trick for even number of inequality indicators
• Two copies of graph: 𝐺1 and 𝐺2
• Equality indicators connect vertices within each copy

• Inequality indicators connect vertices between copies

• Nodes 𝑠 and 𝑡 only exist in 𝐺1

• Use Dijkstra’s algorithm to find shortest path
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• Very similar construction possible to separate mod-2 and mod-k cuts
• Caprara and Fischetti (1996): {0,½}-Chvátal-Gomory cuts

• Caprara, Fischetti and Letchford (2000): On the separation of maximally violated mod-
k cuts

• Andreello, Caprara and Fischetti (2007): Embedding {0,½}-Cuts in a Branch-and-Cut 
Framework: A Computational Study

• But Gurobi uses different approach for these cuts
• Gaussian LU factorization in mod-k space

• Koster, Zymolka and Kutschka (2009): Algorithms to Separate {0,½}-Chvátal-Gomory
Cuts
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• Network heuristic
• Find negative cost cycles to improve solution for problems with network structure

• Network simplex algorithm
• Find negative cost cycles to detect negative reduced costs for pricing selection
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• Fixed charge network flow problem

• Flow conservation constraints: σ𝑎∈𝛿+ 𝑣 𝑓𝑎 − σ𝑎∈𝛿− 𝑣 𝑓𝑎 = 𝑑𝑣
• Arc capacity constraints: 𝑓𝑎 − 𝑐𝑎𝑧𝑎 ≤ 0
• Flow variables: 𝑓𝑎 ≥ 0

• Arc selection variables: 𝑧𝑎 ∈ 0,1
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𝑐𝑎 , 𝑓𝑎 , 𝑧𝑎

𝑑𝑣



• Network cut:

• Capacity on network cut must be large enough to transport demand from 𝑆 to 𝑇 plus the flow that goes from 𝑇
back to 𝑆:



𝑎∈𝛿+ 𝑆

𝑐𝑎𝑧𝑎 − 

𝑎∈𝛿− 𝑆

𝑓𝑎 ≥

𝑣∈𝑆

𝑑𝑣

• Dividing by any of the 𝑐𝑎 and applying mixed integer rounding yields cut-set inequalities
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• Heuristic to separate network cuts
• Assign arc weights to be 𝑤𝑎 ≔ 𝑠𝑎

∗ − 𝜋𝑎
∗

• LP slack value 𝑠𝑎
∗ for capacity constraint on arc 𝑎

• Dual solution value 𝜋𝑎
∗ for capacity constraint on arc 𝑎

• Search for minimum weighted cut in resulting graph
• Note that weights can be negative!

• Minimum cut problem with negative weights is 𝒩𝒫-hard

• Use heuristic for minimum cut problem
• Try all single node sets 𝑆 = 𝑣

• Additionally, contract nodes in non-increasing order of weights 𝑤𝑎 until only 5 super nodes 
are left; then enumerate all cuts

• Bienstock, Chopra, Günlük, Tsai (1998): Minimum cost capacity installation for multicommodity 
network flows

• Günlük (1999): A branch and cut algorithm for capacitated network design problems

• Achterberg and Raack (2010): The MCF-Separator – Detecting and Exploiting Multi-Commodity 
Flow Structures in MIPs
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• Runtime for interior point LP solver is dominated by cost of computing a sparse Cholesky 
factorization on 𝐴𝐴𝑇

• Cost depends heavily on elimination order (ordering of rows of 𝐴)

• Some orderings can lead to catastrophic fill-in

• Problem of finding optimal fill-reducing ordering is 𝒩𝒫-complete

• Yannakakis (1981): Computing the Minimum Fill-In is NP-Complete
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• Adjacency graph in sparse Cholesky factorization
• Simple correspondence between symmetric sparse matrix (structure) and adjacency 

graph
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• Adjacency graph in sparse Cholesky factorization
• Simple correspondence between symmetric sparse matrix (structure) and adjacency 

graph

• Gaussian elimination produces cliques
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• Nested dissection ordering heuristic
• Divide and conquer

• Vertex separators disconnect the problem
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Nested-dissection fill-reducing ordering for interior point LP solver
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• Very common constraints in MIP are set packing constraints

𝑥1 +⋯+ 𝑥𝑘 ≤ 1

for binary variables 𝑥𝑗

• Multiple set packing constraints can be merged, for example:

𝑥1 + 𝑥2 ≤ 1

𝑥1 + 𝑥3 ≤ 1

𝑥2 + 𝑥3 ≤ 1

can be equivalently represented by

𝑥1 + 𝑥2 + 𝑥3 ≤ 1

• The latter has a much stronger LP relaxation than the former
• For example, 𝑥1 = 𝑥2 = 𝑥3 = 0.5 is feasible for the former, but not for the latter
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• Consider stable set relaxation of a MIP
• Graph 𝐺 = 𝑉, 𝐸 with nodes 𝑉 being the (complemented) binary variables of the 

problem and edges 𝐸 = 𝑖, 𝑗 𝑥𝑖 , 𝑥𝑗 share a set packing constraint

• For each set packing constraint 𝑆 ⊆ 𝑉 find large clique 𝐶 ⊇ 𝑆
• Ideally, find maximum clique

• Max clique is 𝒩𝒫-complete

• Use heuristic to find large clique

• Replace σ𝑗∈𝑆 𝑥𝑗 ≤ 1 by σ𝑗∈𝐶 𝑥𝑗 ≤ 1

• Discard all set packing constraints with 𝑆′ ⊆ 𝐶
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nw04

• Many heuristics for max clique available

• E.g., Robson (2001): Finding a maximum independent set in time 𝒪 2𝑛/4

• But: problem is not given as 𝐺 = 𝑉, 𝐸
• Instead, problem is given as 𝐺 = 𝑉, 𝒞 with 𝒞 being a set of cliques

• Edges 𝐸 implicitly given as all edges defined by cliques 𝒞

• Consider set partitioning instances like nw04

• Constraints with 50,000 variables imply >1 billion edges!

• Cannot afford to create 𝐺 = 𝑉, 𝐸 explicitly

picture from miplib.zib.de
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• Gurobi heuristic is a greedy clique growing heuristic to obtain a maximum clique
• Start by adding all variables of initial clique 𝑆 to 𝐶

• Main operation: filter out nodes that are not neighbors of the recently added node 𝑣

• Mark all cliques in which 𝑣 appears

• Check for remaining candidates if they appear in one of the marked cliques

• If not, remove candidate from list

• Speed-up for main operation:

• Consider nodes of starting clique in batches of size 32

• Use bit logic for clique membership check

• Then, add one or more of the remaining candidates to 𝐶

• Add largest set of candidates that appear in a common clique

• Safeguard: only process first 10 candidates to count clique cover number

• Otherwise, too expensive for model with 4 million set packing constraints but only 6800 variables
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• Main operation of Gurobi heuristic traverses columns of matrix
• Find neighbors by processing the rows of the matrix

• On average, this touches ҧ𝑙𝑐 + ҧ𝑙𝑐 ∙ ҧ𝑙𝑟 non-zero matrix entries
• ҧ𝑙𝑐 and ҧ𝑙𝑟 being the average number of non-zeros in columns and rows

• If all set packing constraints are of size 2, this means to touch 3 ҧ𝑙𝑐 non-zeros

• Separate clique merging algorithm specialized for short cliques
• Considers only set packing constraints of size up to 100
• Explicitly forms 𝐺 = 𝑉, 𝐸 , only storing one direction for each edge

• Reduces memory access for size 2 cliques from 3 ҧ𝑙𝑐 to ҧ𝑙𝑐
• Typically, translates into a runtime improvement of almost 3x

• See Achterberg, Bixby, Gu, Rothberg and Weninger (2019): Presolve Reductions in 
Mixed Integer Programming
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• Clique cut separation very similar to clique merging

• Differences:
• Start with subset of clique

• Only variables with 𝑥𝑗
∗ > 0

• Weighted max clique

• Maximize sum of LP solution values

• Initially, only consider variables with 𝑥𝑗
∗ > 0

• Final step is to grow clique further using variables with 𝑥𝑗
∗ = 0



• Given a knapsack constraint

𝑎0𝑥0 + 𝑎1𝑥1 +⋯+ 𝑎𝑛𝑥𝑛 ≤ 𝑏

with 𝑎𝑗 > 0 and binary variables 𝑥𝑗

• Use dynamic programming to calculate

𝛼0 ≔ max σ𝑗=1
𝑛 𝑎𝑗𝑥𝑗 𝑥 ∈ 0,1 𝑛 ∩ 0, 𝑏

𝛼1 ≔ max σ𝑗=1
𝑛 𝑎𝑗𝑥𝑗 𝑥 ∈ 0,1 𝑛 ∩ 0, 𝑏 − 𝑎0

for the activity of the other variables 𝑗 = 1,… , 𝑛, given 𝑥0 = 0 or 𝑥0 = 1

• Lifting:
• If 𝑑1 ≔ 𝑏 − 𝑎0 − 𝛼1 > 0: set 𝑎0 ≔ 𝑎0 + 𝑑1

• If 𝑑0 ≔ 𝑏 − 𝛼0 > 0: set b ≔ 𝑏 − 𝑑0 and 𝑎0 ≔ max 𝑎0 − 𝑑0, 0
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• Example:
3𝑥0 + 4𝑥1 + 7𝑥2 + 8𝑥3 ≤ 20

• Use dynamic programming to calculate

𝛼0 ≔ max 4𝑥1 + 7𝑥2 + 8𝑥3 𝑥 ∈ 0,1 𝑛 ∩ 0,20 = 19

𝛼1 ≔ max 4𝑥1 + 7𝑥2 + 8𝑥3 𝑥 ∈ 0,1 𝑛 ∩ 0,17 = 15

• Lifting:

• If 𝑑1 ≔ 𝑏 − 𝑎0 − 𝛼1 = 2 > 0: set 𝑎0 ≔ 𝑎0 + 𝑑1 = 5

• If 𝑑0 ≔ 𝑏 − 𝛼0 = 1 > 0: set b ≔ 𝑏 − 𝑑0 = 19 and 𝑎0 ≔ max 𝑎0 − 𝑑0, 0 = 4

• Result:
4𝑥0 + 4𝑥1 + 7𝑥2 + 8𝑥3 ≤ 19
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• Apply coefficient strengthening
• on all knapsack constraints in an inner presolve loop

• on all cutting planes generated during the search

• Thus, this is a very heavily used algorithm!

• Dynamic programming to calculate lifting values is 𝒪 2𝑛

• Apply only for knapsacks of length up to 10

• Otherwise, use more complicated algorithm that

• deals with a number of special cases,

• calculates at most 64 different values inside the dynamic program, and

• aborts if the required number of values exceeds 64
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• Given a knapsack constraint

𝑎1𝑥1 +⋯+ 𝑎𝑛𝑥𝑛 ≤ 𝑏

with 𝑎𝑗 > 0 and binary variables 𝑥𝑗
• A subset 𝐶 ⊆ 𝑁 ≔ 1,… , 𝑛 is called a cover if σ𝑗∈𝐶 𝑎𝑗 > 𝑏

• Resulting cover cut: σ𝑗∈𝐶 𝑥𝑗 ≤ 𝐶 − 1

• Separation:
• Set 𝐶0 ≔ 𝑗 𝑥𝑗

∗ = 0 , 𝐶1 ≔ 𝑗 𝑥𝑗
∗ = 1 , 𝐶𝑓 ≔ 𝑁\𝐶0\𝐶1

• Find greedy minimum cover 𝐶 for σ𝑗∈𝐶𝑓 𝑎𝑗𝑥𝑗 ≤ 𝑏 − σ𝑗∈𝐶1 𝑎𝑗
• Safeguard: only proceed if 𝐶 ∙ 𝑛 ≤ 109

• Up-lift variables in 𝐶𝑓\C to make cut stronger
• Down-lift variables in 𝐶1 to make cut valid for 𝑁
• Up-lift variables in 𝐶0 to make cut stronger

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 58

Dynamic Programming
Knapsack cover cut separation



• A bijection 𝑓:ℝ𝑛 → ℝ𝑛 is called a symmetry for a given MIP if
• it maps the feasible solution space 𝑋 of the MIP to itself: 𝑓 𝑋 = 𝑋, and

• it preserves objective values: 𝑐𝑇𝑓 𝑥 = 𝑐𝑇𝑥 for all 𝑥 ∈ 𝑋

• This definition based on feasible solution space 𝑋 is not practical, as deciding 
whether 𝑋 = ∅ is 𝒩𝒫-complete

• In practice: consider permutations that leave constraints and objective invariant
• A permutation 𝜋:𝑁 → 𝑁 of column indices is a formulation symmetry if there exists a 

permutation 𝜎:𝑀 → 𝑀 of row indices such that

• 𝜋 𝐼 = 𝐼 (i.e., 𝜋 preserves integer variables),

• 𝜋 𝑐 = 𝑐,

• 𝜎 𝑏 = 𝑏, and

• 𝐴𝜎 𝑖 ,𝜋(𝑗) = 𝐴𝑖,𝑗 for all 𝑖 ∈ 𝑀, 𝑗 ∈ 𝑁
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• Detecting formulation symmetries for MIP can be reduced to detecting graph 
automorphisms

• Bipartite graph with nodes for constraints and variables, edges for non-zero coefficients
• Constraint nodes are colored with right hand side values 𝑏𝑖
• Variable nodes are colored with objective values 𝑐𝑗 (and integrality property)

• Edges are colored with matrix coefficients

• Graph automorphism that respects colors is formulation symmetry of MIP

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 60

Graph Automorphism
Symmetry detection

𝑏1

𝑏𝑖

𝑏𝑚

𝑐1

𝑐𝑗

𝑐𝑛

𝑎𝑖𝑗 ≠ 0



• Complexity status of graph automorphism problem is still unknown
• No polynomial algorithm known

• Not proven to be 𝒩𝒫-hard

• See Read and Corneil (1977): The graph isomorphism disease

• Efficient algorithms in practice exist
• nauty

• saucy

• bliss

• Gurobi implements a variant of these algorithms

• See also Pfetsch and Rehn (2019): A computational comparison of symmetry 
handling methods for mixed integer programs

© 2022 Gurobi Optimization, LLC. Confidential, All Rights Reserved | 61

Graph Automorphism
Symmetry detection



• Maintain two sets of partitions for constraints and variables
• Σ and Π to group constraints and variables that could potentially be in same orbit

• Σ and Π to group constraints and variables that are definitely in the same orbit

• Initially, Σ and Π are defined by node colors, Σ and Π are all singletons

• Recursively refine Σ and Π using hash values
• calculated from hash values of neighbor nodes

• If fix point is reached, branch on a non-singleton part of Σ or Π
• Failed branch refines partitions and thus hash values

• Leaf branching node corresponds to valid symmetry generator and updates Σ and Π

• Perform branching with backtracking until
• Σ = Σ and Π = Π (generators to produce all symmetries have been found), or

• a work limit has been hit (generators produce a subset of the symmetries)
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• Important tricks to get good performance in practice
• Sparse updates of data structures

• Only touch those constraints and variables in refinement that have changed
• When splitting a partition class, assign new label to smaller part

• Special treatment of singleton partition classes
• Remove them from graph after hash update, as their hashes won‘t change anymore

• Use very good hash function to avoid hash collisions
• Initially, check whether old symmetry generators are still valid

• If we search for symmetry again after some problem changes

• Check work limits regularly to avoid bad corner cases

• Why care?
• Exploiting symmetry yields ~20% performance improvement overall
• ~2x speed-up on affected models
• See Achterberg and Wunderling (2013): Mixed Integer Programming: Analyzing 12 Years of 

Progress
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• Consider a symmetry generator 𝑔:𝑁 → 𝑁 that is
• non-overlapping

• No 𝑥𝑗 appears in the same constraint as 𝑥𝑔(𝑗)

• or that does not affect integer variables

• For all 𝑗 ∈ 𝐼 we have 𝑔 𝑗 = 𝑗

• Then we can aggregate all variables according to the generator:

𝑥𝑗 ≔ 𝑥𝑔(𝑗)

• Each symmetry generator extends sets of equivalent variables

• This can be efficiently recorded with a union find data structure
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Symmetry aggregations



Other Interesting 
Algorithms

Sorting

Euclidean algorithm

Hashing

Random number generation

... not covered today


